ECG782: MULTIDIMENSIONAL DIGITAL SIGNAL PROCESSING DEEP COMPUTER VISION USING CNNS

Géron Chapter 14

http://www.ee.unlv.edu/~b1morris/ecg782

OUTLINE

- Biological Inspiration
- Convolutional Layers
- Pooling Layers
- CNN Architectures
- Object Detection
- Semantic Segmentation

EVOLUTION OF COMPUTER VISION

Classical vision

- Hand-crafted features and algorithm based on expert knowledge
- Classical machine learning
 - Hand-crafted features (preprocessing) but ML for classification
- Deep learning
 - Both features and classification are learned
 - End-to-end training (from pixels to output)

DEEP CNN DOMINANCE IN CV

Object detection accuracy improvements

4

Zou et al., "Object Detection in 20 Years: A survey, 2019

Li, Johnson, and Yeung, 2019

ARCHITECTURE OF THE VISUAL CORTEX

- Modern CV is inspired by human vision (sensory modules)
- Hubel and Wiesel showed that neurons in the visual cortex had a small local receptive field
 - Only reacted to stimuli in a limited region of visual field (blue dashed circles)
- Lower-level neurons with simple pattern response (e.g. lines of specific orientation)
- Higher-level neurons with larger receptive field and combination of lower-level patterns
 - Neurons at higher-levels only connected to few at lower-level

CONVOLUTIONAL NEURAL NETWORK

- Stacked neuron architecture enables detection of complex patterns in any area of the visual field → convolutional neural networks (CNNs)
- Led to LeNet-5 architecture by Yann LeCunn for handwritten number recognition (MNIST)
 - Fully connected layers and sigmoid activations
 - Convolutional layers and pooling layers
- Why not fully connected layers for images?
 - Even small images have large number of pixels resulting in huge networks
 - CNNs solve this with partial connected layers and weight sharing

CONVOLUTIONAL LAYERS

- Neurons in the first layer are not connected to every single pixel in input image
 - Connected to receptive field
 - Stacked receptive field approach
- Hierarchical structure
 - First layer small low-level features
 - Higher-levels assemble lowerlevel features into higher-level features
 - Structure is common in real-world images

CONVOLUTIONAL LAYER CONNECTIONS

- Note: the actual operation performed is cross-correlation (no-flipping)
- Neuron (row, column) (*i*, *j*) is connected to neurons in previous layer within receptive field
 - Row $[i, i + f_h 1]$
 - f_h height of receptive field
 - Column $[j, j + f_w 1]$
 - f_w width of receptive field
 - Note: this is a causal filter though shown as symmetric
- Zero padding used to keep output/input layers of same size

CONVOLUTIONAL LAYERS STRIDE

- Stride can be used to connect a large input layer to smaller output layer
- Change the spacing the of the receptive field
- Dramatically reduce model computational complexity (squared)
 - Height and width stride can be different

FILTERS

- Filters = convolutional kernels
- Size of the kernel is the receptive field for the neuron
- Feature map output of the "convolution" operation
 - Highlights areas in an image that activate the filter most
- For CNNs, the filters are not defined manually!
 - Learn most useful filters for a task
 - Higher layers will learn to combine into more complex patterns

VISUALIZING WEIGHTS AND FEATURES

See Szeliski 2e, Ch 5.4.5

11

STACKING MULTIPLE FEATURE MAPS I

- Each convolution layer has multiple filters
 - Stacked 3D output (1 feature map for each filter)
- Each neuron in a feature map shares the same parameters (weights and bias)
- Neurons in different feature maps use different parameters
- Neuron's receptive field applies to all feature maps of previous layer
- Note input images often have multiple sublayers (channels)

STACKING MULTIPLE FEATURE MAPS II

• Output of a neuron in a convolutional layer

$$z_{i,j,k} = b_k + \sum_{u=0}^{f_h - 1} \sum_{v=0}^{f_w - 1} \sum_{k=0}^{f_{n'} - 1} x_{i',j',k'} \times w_{u,v,k',k}$$
$$\begin{cases} i' = i \times s_h + u\\ j' = j \times s_w + v \end{cases}$$

- $z_{i,j,k}$ output of neuron in row i, column, j, in feature map k of the convolutional layer l
- b_k bias term for feature map k (in layer l)
 - Tweaks overall brightness of feature map k

- s_h, s_w vertical and horizontal strides
- f_h, f_w height and width of receptive field (kernel)
- $f_{n'}$ number of feature maps in previous (lower layer)
- $x_{i',j',k'}$ output of neuron located in layer l - 1, row i', column j', feature map k
- $w_{u,v,k',k}$ connection weight between any neuron in feature map k of the layer l and its input located at row u, column v (relative to the neuron's receptive field), and feature map k'

MEMORY REQUIREMENTS

Though much smaller the fully connected networks, CNNs still use significant amount of RAM

14

- During training, the reverse pass of backpropagation requires all the intermediate values computed during the forward pass
 - Need to have enough for all layers in the network
 - Forward pass can release memory after each layer is computed (only two consecutive layers required)
- Out-of-memory error
 - Reduce mini-batch size, increase stride, remove layers, change precision (16-bit vs 32-bit floats or use int), or distribute the CNN across devices

POOLING LAYERS

- Subsample input in order to reduce computational load, memory usage, and number of parameters (reduce risk of overfitting)
- Aggregate over the receptive field
 - Aggregate functions such as max (most popular) or mean
 - Max tends to work better by preserving only the strongest feature → cleaner signal, more invariance, less compute
- Stride gives downsampling
- Pooling kernel size can be even

Max pooling layers (2x2 kernel, stride=2, no padding)

POOLING LAYERS INVARIANCE

- Introduces some level of invariance to small translations
 - Small image shifts result in same response
 - Additionally small invariance to rotation and scale with max pool
- Max pool every few CNN layers for invariance at larger scale
 - Useful when task should be invariant (e.g. image classification)
- Drawbacks
 - Destructive 2x2, stride 2 drops 75% of input values
 - Invariance not always desirable (e.g. semantic segmentation should have equivariance)

CNN ARCHITECTURES

Typical CNN architecture

- Stack a few convolutional layers (each followed by ReLU layer for non-linearity)
- Pooling layer
- Repeat Conv + ReLU + Pool
- Top layers are regular feedforward neural network which is usually fully connected layers (+ReLUs)
- Final layer outputs the prediction (e.g. softmax for class probabilities)

- Input kernel can be larger since generally only 3 sublayers (RGB channels)
- Conv layers use stacked small 3x3 kernels since it is more computationally efficient and perform better than larger
- Number of filters increases at higher layers
 - Few low-level patterns, but more ways to combine
 - Double #filters after pooling (stride 2)
- Flatten conv output before fully connected dense layer
 - Add dropout to avoid overfitting

ILSVRC IMAGENET CHALLENGE

- Variants of basic CNN architecture have been developed
- Benchmark with ImageNet Challenge
 - Large scale with 1M images and 1000 classes
 - Much more complicated than any benchmark at the time (~2010)
- Dramatic drop in top-five error from 26% to 2.3% in 6 years
 - Bigger is better

LENET-5

- Network of Yann LeCun (1998) [NYU] designed for handwritten digit recognition (MNIST)
- Images normalized at input
- No padding → smaller size each layer
- Average pool has learnable coefficient and bias term
- Limited C3-S2 map connections
- Output square Euclidean distance
 - Similar cross-entropy

Table 14-1. LeNet-5 architecture

Layer	Туре	Maps	Size	Kernel size	Stride	Activation
Out	Fully connected	-	10	-	-	RBF
F6	Fully connected	-	84	-	-	tanh
(5	Convolution	120	1×1	5×5	1	tanh
S4	Avg pooling	16	5×5	2×2	2	tanh
ß	Convolution	16	10 imes 10	5×5	1	tanh
S2	Avg pooling	6	14×14	2×2	2	tanh
C1	Convolution	6	28 imes 28	5×5	1	tanh
In	Input	1	32 × 32	-	-	-

http://yann.lecun.com/exdb/lenet/index.html

ALEXNET

- 2013 ImageNet winner
 - 17% top-5 error rate (26% for 2nd place)
 - Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton [U Toronto]
- Similar to LeNet-5 but larger and deeper
- First to stack convolutional layers directly on top of one another (no pooling in between)
- To reduce overfitting
 - 50% dropout of layers F9 and F10
 - Data augmentation
- Local response normalization used to inhibit neighboring feature maps
 - Encourage different feature maps to specialize, push neighbors apart, and improve generalization

Table 14-2. AlexNet architecture

Layer	Туре	Maps	Size	Kernel size	Stride	Padding	Activation
Out	Fully connected	-	1,000	-	-	-	Softmax
F10	Fully connected	-	4,096	-	-	-	ReLU
F9	Fully connected	-	4,096	-	-	-	ReLU
S8	Max pooling	256	6×6	3×3	2	valid	-
C7	Convolution	256	13 × 13	3×3	1	same	ReLU
<mark>C6</mark>	Convolution	384	13 × 13	3×3	1	same	ReLU
C5	Convolution	384	13 × 13	3×3	1	same	ReLU
S4	Max pooling	256	13 × 13	3×3	2	valid	-
G	Convolution	256	27 × 27	5×5	1	same	ReLU
S2	Max pooling	96	27 × 27	3×3	2	valid	-
C1	Convolution	96	55 × 55	11×11	4	valid	ReLU
In	Input	3 (RGB)	227 × 227	-	-	-	-

ZF Net is an AlexNet variant with tweaked hyperparameters

DROPOUT

- Popular technique from Hinton 2012 and Srivastava et al. 2014
 - 1-2% accuracy boost (even SOTA)
- At each training step, a neuron has a probability of being ignored (dropped out)
 - Neuron can be active during next training step
- Dropout rate generally between 10-50%
 - 20-30% for recurrent neural networks
 - 40-50% for CNNs
- Forces networks to diversify
 - Neurons cannot co-adapt with neighbors
 - Cannot rely only an a few input neurons
 - Less sensitive to slights changes in input
 - ~Average of many networks

DATA AUGMENTATION

- Artificially increase training dataset size by generating realistic variants of training instances
 - Ideally, shouldn't be able to distinguish real from augmented example
- Reduces overfitting (regularization technique)
- Common augmentations
 - Small shifts, rotation, resize (scaling)
 - Horizontal flip orientation invariance
 - Vary contrast lighting condition invariance

Figure 14-12. Generating new training instances from existing ones

GOOGLENET (INCEPTION)

• 2014 ILSVRC Winner

- <7% top-5 error rate
- Christian Szegedy et al. [Google]
- Current versions Inception-v3 and Inception-v4 (GoogLeNet + ResNet)
- Much deeper architecture than previous CNN (large stack)
 - Much fewer parameters (6M vs. 60M AlexNet)
- Inception layers for parameter efficiency
- Use of 1x1 convolutions as a bottleneck layers
- Local response normalization to learn a wide variety of features
- Classification task with multiple (max) pool to reduce size (avg. final 7x7 map)
 - No need for multiple fully connected (FC) layers to save parameters

INCEPTION MODULE

- Parallel convolutions
 - 3x3+1(S) = 3x3 kernel, stride 1, "same" padding
 - All use ReLU activation
- 2nd convolution layer
 - Different kernel size for patterns at different scale
 - Stacked conv for more complex patterns than single linear convolution
- Depth concat
 - All layers have the same outputs size
 - Stack 2nd layer outputs depthwise
- 1x1 bottleneck layers
 - Fewer output than input dimension
 - Fewer parameters, faster training, improved generalization
 - Not spatial but depth patterns

VGGNET

- 2014 ILSVRC runner-up
 - Simonyan and Zisserman [Oxford]
- Classical architecture
 - Stacked 2-3 conv + pool layers
 - Variants of 16 or 19 conv layers
 - **3** FC classification layers
- Used many 3x3 filters

25

RESNET

- 2015 ILSVRC winner
 - \sim <3.6% top-5 error rate
 - Kaiming He et. Al [Microsoft]
- Deeper with fewer parameters
 - 152 layer winner
 - Variants of 34, 50, and 101 layers
- Skip (shortcut) connections
 - Signal passed into up one layer and a further layers ahead
 - Build network on residual units (RUs)
- Batch normalization (pg 338)
 - Better gradient conditioning (vanishing gradient)
 - Standardize inputs then rescales and offsets
 - Acts as a regularizer (e.g. no need for dropout)

RESIDUAL LEARNING I

- Signal feeding layer is also added to the output of a layer higher in the stack
- Instead of modeling function h(x), it models f(x) = h(x) x
- Faster weight update (0 initialization)
 - Regular networks output 0
 - Skip connection copies input (identity function)

RESIDUAL LEARNING II

- Skip connection bypass layer blocking
 - Input signal can propagate to higher levels
 - Can train layers even if lower layers have not started learning yet
- Feature map size and depth change
 - Skip connection prevents direct addition after resize
 - 1x1 convolution, stride 2, and output matched kernel size

XCEPTION

- GoogLeNet variant
 - Combines GoogLeNet + ResNet
 - Inception modules replaced with depthwise separable convolution layer
 - Chollet 2016 (Keras author)
- Separable convolution layer
 - Separate spatial and depth
 - 1 spatial filter per input channel
 - Use on layers with many feature channels (not on input/early layers)
 - Fewer parameters, less memory, fewer computations, and generally perform better

SENET

- 2018 ILSVRC winner
 - Squeeze-and-Excitation Network
 - 2.25% top-5 error rate
 - Built on Inception (SE-Inception) and ResNets (SE-ResNet)
- SE block
 - Global average pool: mean of each feature map
 - "Squeeze" (bottleneck)
 - Dramatically reduce number of maps for low dimensional embedding of feature distribution
 - Force SE block to learn general representations of feature combinations
 - Output: recalibration vector (boost normally co-occurring features)

SE BLOCK

- Analyze output of attached unit to learn features that are usually most active together (depth search)
- Recognizes features that respond together (mouth, nose, eyes) and boosts features that are missing/low response (e.g. eyes)
- Recalibration steps solves ambiguity when feature is confused with something else

PRETRAINED MODELS AND TRANSFER LEARNING

- Don't implement models from scratch by hand, use existing implementations
 - Known as backbone network
- Models pretrained on ImageNet
 - Good general features
 - Models expect specific size and pre-processing (e.g. normalization)
- Only requires a few lines of code

Transfer learning

- Utilize strong backbone and adjust last layers for a specific task
- Useful when not working with ImageNet classes (all the time) and with limited training data
- Initialize network with ImageNet weights and only train higher layers (e.g. classification or minimal conv)

CLASSIFICATION AND LOCALIZATION

- Classification identify the image class
- Localization provide a bounding box for the image class
 - Expressed as a regression task [x, y, w, h]
 - Assumption of a single object per image
 - Much of the work is in labeling the data with bounding boxes
 - Many tools exist (e.g. VGG Image Annotator, LabelImg, OpenLabeler, ImgLab, LabelBox, Suervisely)
 - Evaluated with intersection over union (IoU) the overlap

OBJECT DETECTION

- Task of classifying and localizing multiple objects in an image
- Early attempts used a sliding window
 - Run classification CNN over each window in the image
 - Need search at scale (multiple passes)
 - Get multiple responses to same object \rightarrow NMS
 - Objectness score to remove responses
 - Merge responses with high IoU

FULLY CONVOLUTIONAL NETWORKS

- Introduced by Long CVPR 2015 for semantic segmentation
- Replace dense classification with convolutional layers
 - Same number of operations but with different output tensor shape
 - Allows processing input of any size (unlike dense layer with fixed input size)
- For larger image, equivalent to sliding CNN across image in blocks

OBJECT DETECTION ARCHITECTURES

36

- Fast(er) R-CNN
 - Apply FCN approach with region proposals
 - Fast R-CNN uses Selective Search
 - Faster R-CNN uses a small region proposal network to predict bounding boxes
- YOLO (you only look once) major shift in approach with a single CNN pass
 - Divide image into cells and predict 5 bounding boxes per cell
 - Predicts bbox offset rather than absolute location (smaller range)
 - Use of anchor boxes (bounding box priors) as prototypical object dimensions
 - Trained with images of different scale \rightarrow detect different scale
- SSD (single shot detector)
 - Better accuracy than YOLO
 - Use of MultiBox with decreasing convolutional layers for detection scales
 - More bounding box predictions than YOLO

SEMANTIC SEGMENTATION

- Each pixel is classified according to the class of the object it belongs
 - Different objects of same class are not distinguished (panoptic segmentation)
- Traditional CNNs lose spatial resolution due to layer stride
 - Need to "upsample" coarse feature map
 - Use transposed convolutional layer
 - Add skip connections for better resolution
- Instance segmentation each object is distinguished from each other
 - Mask R-CNN, Kaiming He 2017 as extension of Faster R-CNN to produce pixel mask for each bounding box

37

(c) Semantic segmentation

(d) Instance segmentation