
http://www.ee.unlv.edu/~b1morris/ecg782

ECG782: MULTIDIMENSIONAL
DIGITAL SIGNAL PROCESSING
DEEP COMPUTER VISION USING CNNS

1

Géron Chapter 14

http://www.ee.unlv.edu/~b1morris/ecg782

Biological Inspiration

Convolutional Layers

Pooling Layers

CNN Architectures

Object Detection

Semantic Segmentation

2

OUTLINE

 Classical vision
 Hand-crafted features and

algorithm based on expert
knowledge

 Classical machine learning
 Hand-crafted features (pre-

processing) but ML for
classification

 Deep learning
 Both features and classification

are learned

 End-to-end training (from pixels
to output)

3

EVOLUTION OF COMPUTER VISION

4

DEEP CNN DOMINANCE IN CV

Zou et al., “Object Detection in 20 Years: A survey, 2019Li, Johnson, and Yeung, 2019

 Modern CV is inspired by human
vision (sensory modules)

 Hubel and Wiesel showed that
neurons in the visual cortex had a
small local receptive field
 Only reacted to stimuli in a limited

region of visual field (blue dashed circles)

 Lower-level neurons with simple
pattern response (e.g. lines of
specific orientation)

 Higher-level neurons with larger
receptive field and combination of
lower-level patterns

 Neurons at higher-levels only connected to
few at lower-level

5

ARCHITECTURE OF THE VISUAL CORTEX

 Stacked neuron architecture enables detection of complex
patterns in any area of the visual field convolutional
neural networks (CNNs)

 Led to LeNet-5 architecture by Yann LeCunn for
handwritten number recognition (MNIST)
 Fully connected layers and sigmoid activations

 Convolutional layers and pooling layers

 Why not fully connected layers for images?
 Even small images have large number of pixels resulting in huge

networks

 CNNs solve this with partial connected layers and weight sharing

6

CONVOLUTIONAL NEURAL NETWORK

 Neurons in the first layer are
not connected to every single
pixel in input image
 Connected to receptive field

 Stacked receptive field approach

 Hierarchical structure
 First layer – small low-level

features

 Higher-levels – assemble lower-
level features into higher-level
features

 Structure is common in real-world
images

7

CONVOLUTIONAL LAYERS

 Note: the actual operation
performed is cross-correlation
(no-flipping)

 Neuron (row, column) 𝑖, 𝑗 is
connected to neurons in previous
layer within receptive field
 Row 𝑖, 𝑖 + 𝑓ℎ − 1

 𝑓ℎ - height of receptive field

 Column 𝑗, 𝑗 + 𝑓𝑤 − 1
 𝑓𝑤 - width of receptive field

 Note: this is a causal filter though
shown as symmetric

 Zero padding used to keep
output/input layers of same size

8

CONVOLUTIONAL LAYER CONNECTIONS

 Stride can be used to connect a
large input layer to smaller
output layer

 Change the spacing the of the
receptive field

 Dramatically reduce model
computational complexity
(squared)

 Height and width stride can be
different

9

CONVOLUTIONAL LAYERS STRIDE

 Filters = convolutional kernels

 Size of the kernel is the receptive
field for the neuron

 Feature map – output of the
“convolution” operation

 Highlights areas in an image that
activate the filter most

 For CNNs, the filters are not
defined manually!

 Learn most useful filters for a task

 Higher layers will learn to combine
into more complex patterns

10

FILTERS

11

VISUALIZING WEIGHTS AND FEATURES

See Szeliski 2e, Ch 5.4.5

 Each convolution layer has
multiple filters
 Stacked 3D output (1 feature map

for each filter)

 Each neuron in a feature map
shares the same parameters
(weights and bias)

 Neurons in different feature maps
use different parameters

 Neuron’s receptive field applies to
all feature maps of previous layer

 Note input images often have
multiple sublayers (channels)

12

STACKING MULTIPLE FEATURE MAPS I

 Output of a neuron in a
convolutional layer

 𝑧𝑖,𝑗,𝑘 - output of neuron in row 𝑖,
column, 𝑗, in feature map 𝑘 of the
convolutional layer 𝑙

 𝑏𝑘 - bias term for feature map 𝑘 (in
layer 𝑙)
 Tweaks overall brightness of feature map

𝑘

13

STACKING MULTIPLE FEATURE MAPS II

 𝑠ℎ, 𝑠𝑤 - vertical and horizontal
strides

 𝑓ℎ, 𝑓𝑤 - height and width of receptive
field (kernel)

 𝑓𝑛′ - number of feature maps in
previous (lower layer)

 𝑥𝑖′,𝑗′,𝑘′ - output of neuron located in
layer 𝑙 − 1, row 𝑖′, column 𝑗′, feature
map 𝑘

 𝑤𝑢,𝑣,𝑘′,𝑘 - connection weight between
any neuron in feature map 𝑘 of the
layer 𝑙 and its input located at row
𝑢, column 𝑣 (relative to the
neuron’s receptive field), and feature
map 𝑘′

 Though much smaller the fully connected networks, CNNs
still use significant amount of RAM

 During training, the reverse pass of backpropagation
requires all the intermediate values computed during the
forward pass
 Need to have enough for all layers in the network
 Forward pass can release memory after each layer is computed

(only two consecutive layers required)

 Out-of-memory error
 Reduce mini-batch size, increase stride, remove layers, change

precision (16-bit vs 32-bit floats or use int), or distribute the CNN
across devices

14

MEMORY REQUIREMENTS

 Subsample input in order to
reduce computational load,
memory usage, and number of
parameters (reduce risk of
overfitting)

 Aggregate over the receptive field
 Aggregate functions such as max

(most popular) or mean
 Max tends to work better by

preserving only the strongest feature
 cleaner signal, more invariance,
less compute

 Stride gives downsampling
 Pooling kernel size can be even

15

POOLING LAYERS

Max pooling layers (2x2 kernel, stride=2, no padding)

 Introduces some level of invariance
to small translations
 Small image shifts result in same

response

 Additionally small invariance to rotation
and scale with max pool

 Max pool every few CNN layers for
invariance at larger scale
 Useful when task should be invariant

(e.g. image classification)

 Drawbacks
 Destructive – 2x2, stride 2 drops 75% of

input values

 Invariance not always desirable (e.g.
semantic segmentation should have
equivariance)

16

POOLING LAYERS INVARIANCE

 Typical CNN architecture
 Stack a few convolutional layers

(each followed by ReLU layer for
non-linearity)

 Pooling layer

 Repeat Conv + ReLU + Pool

 Top layers are regular
feedforward neural network which
is usually fully connected layers
(+ReLUs)

 Final layer outputs the prediction
(e.g. softmax for class
probabilities)

 Input kernel can be larger since generally
only 3 sublayers (RGB channels)

 Conv layers use stacked small 3x3 kernels
since it is more computationally efficient
and perform better than larger

 Number of filters increases at higher layers
 Few low-level patterns, but more ways to

combine

 Double #filters after pooling (stride 2)

 Flatten conv output before fully connected
dense layer
 Add dropout to avoid overfitting

17

CNN ARCHITECTURES

 Variants of basic CNN
architecture have been
developed

 Benchmark with ImageNet
Challenge
 Large scale with 1M images and

1000 classes

 Much more complicated than any
benchmark at the time (~2010)

 Dramatic drop in top-five error
from 26% to 2.3% in 6 years
 Bigger is better

18

ILSVRC IMAGENET CHALLENGE

 Network of Yann LeCun (1998)
[NYU] designed for handwritten
digit recognition (MNIST)

 Images normalized at input

 No padding smaller size each
layer

 Average pool has learnable
coefficient and bias term

 Limited C3-S2 map connections

 Output square Euclidean distance

 Similar cross-entropy

19

LENET-5

http://yann.lecun.com/exdb/lenet/index.html

http://yann.lecun.com/exdb/lenet/index.html

 2013 ImageNet winner
 17% top-5 error rate (26% for 2nd place)

 Alex Krizhevsky, Ilya Sutskever, and
Geoffrey Hinton [U Toronto]

 Similar to LeNet-5 but larger and
deeper

 First to stack convolutional layers
directly on top of one another (no
pooling in between)

 To reduce overfitting
 50% dropout of layers F9 and F10

 Data augmentation

 Local response normalization used to
inhibit neighboring feature maps
 Encourage different feature maps to

specialize, push neighbors apart, and
improve generalization

20

ALEXNET

ZF Net is an AlexNet variant with tweaked hyperparameters

 Popular technique from Hinton 2012
and Srivastava et al. 2014
 1-2% accuracy boost (even SOTA)

 At each training step, a neuron has a
probability of being ignored (dropped
out)
 Neuron can be active during next training step

 Dropout rate generally between 10-50%
 20-30% for recurrent neural networks

 40-50% for CNNs

 Forces networks to diversify
 Neurons cannot co-adapt with neighbors

 Cannot rely only an a few input neurons

 Less sensitive to slights changes in input

 ~Average of many networks

21

DROPOUT

 Artificially increase training
dataset size by generating
realistic variants of training
instances
 Ideally, shouldn’t be able to

distinguish real from augmented
example

 Reduces overfitting
(regularization technique)

 Common augmentations
 Small shifts, rotation, resize (scaling)
 Horizontal flip – orientation

invariance
 Vary contrast – lighting condition

invariance

22

DATA AUGMENTATION

 2014 ILSVRC Winner
 <7% top-5 error rate

 Christian Szegedy et al. [Google]

 Current versions Inception-v3 and Inception-v4
(GoogLeNet + ResNet)

 Much deeper architecture than previous
CNN (large stack)
 Much fewer parameters (6M vs. 60M AlexNet)

 Inception layers for parameter efficiency

 Use of 1x1 convolutions as a bottleneck
layers

 Local response normalization to learn a
wide variety of features

 Classification task with multiple (max) pool
to reduce size (avg. final 7x7 map)
 No need for multiple fully connected (FC) layers

to save parameters

23

GOOGLENET (INCEPTION)

 Parallel convolutions
 3x3+1(S) = 3x3 kernel, stride 1, “same” padding

 All use ReLU activation

 2nd convolution layer
 Different kernel size for patterns at different

scale

 Stacked conv for more complex patterns than
single linear convolution

 Depth concat
 All layers have the same outputs size

 Stack 2nd layer outputs depthwise

 1x1 bottleneck layers
 Fewer output than input dimension

 Fewer parameters, faster training, improved
generalization

 Not spatial but depth patterns

24

INCEPTION MODULE

 2014 ILSVRC runner-up

 Simonyan and Zisserman [Oxford]

 Classical architecture

 Stacked 2-3 conv + pool layers

 Variants of 16 or 19 conv layers

 3 FC classification layers

 Used many 3x3 filters

25

VGGNET

 2015 ILSVRC winner
 <3.6% top-5 error rate

 Kaiming He et. Al [Microsoft]

 Deeper with fewer parameters
 152 layer winner

 Variants of 34, 50, and 101 layers

 Skip (shortcut) connections
 Signal passed into up one layer and a further

layers ahead

 Build network on residual units (RUs)

 Batch normalization (pg 338)
 Better gradient conditioning (vanishing

gradient)

 Standardize inputs then rescales and offsets

 Acts as a regularizer (e.g. no need for dropout)

26

RESNET

 Signal feeding layer is also
added to the output of a layer
higher in the stack

 Instead of modeling function
ℎ(𝑥), it models 𝑓 𝑥 = ℎ 𝑥 −
𝑥

 Faster weight update (0
initialization)

 Regular networks output 0

 Skip connection copies input
(identity function)

27

RESIDUAL LEARNING I

 Skip connection bypass layer
blocking
 Input signal can propagate to

higher levels

 Can train layers even if lower
layers have not started learning
yet

 Feature map size and depth
change
 Skip connection prevents direct

addition after resize

 1x1 convolution, stride 2, and
output matched kernel size

28

RESIDUAL LEARNING II

 GoogLeNet variant
 Combines GoogLeNet + ResNet

 Inception modules replaced with
depthwise separable convolution
layer

 Chollet 2016 (Keras author)

 Separable convolution layer
 Separate spatial and depth

 1 spatial filter per input channel

 Use on layers with many feature
channels (not on input/early layers)

 Fewer parameters, less memory,
fewer computations, and generally
perform better

29

XCEPTION

 2018 ILSVRC winner
 Squeeze-and-Excitation Network

 2.25% top-5 error rate

 Built on Inception (SE-Inception) and
ResNets (SE-ResNet)

 SE block
 Global average pool: mean of each

feature map

 “Squeeze” (bottleneck)
 Dramatically reduce number of maps for low

dimensional embedding of feature
distribution

 Force SE block to learn general
representations of feature combinations

 Output: recalibration vector (boost
normally co-occurring features)

30

SENET

 Analyze output of attached
unit to learn features that are
usually most active together
(depth search)

 Recognizes features that
respond together (mouth, nose,
eyes) and boosts features that
are missing/low response (e.g.
eyes)

 Recalibration steps solves
ambiguity when feature is
confused with something else

31

SE BLOCK

 Don’t implement models from
scratch by hand, use existing
implementations

 Known as backbone network

 Models pretrained on ImageNet

 Good general features

 Models expect specific size and
pre-processing (e.g. normalization)

 Only requires a few lines of
code

 Transfer learning

 Utilize strong backbone and
adjust last layers for a specific
task

 Useful when not working with
ImageNet classes (all the time)
and with limited training data

 Initialize network with
ImageNet weights and only
train higher layers (e.g.
classification or minimal conv)

32

PRETRAINED MODELS AND TRANSFER LEARNING

 Classification – identify the image
class

 Localization – provide a bounding
box for the image class
 Expressed as a regression task [x, y,

w, h]
 Assumption of a single object per

image
 Much of the work is in labeling the

data with bounding boxes
 Many tools exist (e.g. VGG Image

Annotator, LabelImg, OpenLabeler,
ImgLab, LabelBox, Suervisely)

 Evaluated with intersection over
union (IoU) the overlap

33

CLASSIFICATION AND LOCALIZATION

 Task of classifying and
localizing multiple objects in
an image

 Early attempts used a sliding
window
 Run classification CNN over each

window in the image

 Need search at scale (multiple
passes)

 Get multiple responses to same
object NMS
 Objectness score to remove responses

 Merge responses with high IoU

34

OBJECT DETECTION

 Introduced by Long CVPR
2015 for semantic segmentation

 Replace dense classification
with convolutional layers
 Same number of operations but

with different output tensor shape

 Allows processing input of any
size (unlike dense layer with fixed
input size)

 For larger image, equivalent to
sliding CNN across image in
blocks

35

FULLY CONVOLUTIONAL NETWORKS

 Fast(er) R-CNN
 Apply FCN approach with region proposals
 Fast R-CNN uses Selective Search
 Faster R-CNN uses a small region proposal network to predict bounding boxes

 YOLO (you only look once) – major shift in approach with a single CNN
pass
 Divide image into cells and predict 5 bounding boxes per cell
 Predicts bbox offset rather than absolute location (smaller range)
 Use of anchor boxes (bounding box priors) as prototypical object dimensions

 Trained with images of different scale detect different scale

 SSD (single shot detector)
 Better accuracy than YOLO
 Use of MultiBox with decreasing convolutional layers for detection scales
 More bounding box predictions than YOLO

36

OBJECT DETECTION ARCHITECTURES

 Each pixel is classified according to
the class of the object it belongs
 Different objects of same class are not

distinguished (panoptic segmentation)

 Traditional CNNs lose spatial
resolution due to layer stride
 Need to “upsample” coarse feature map

 Use transposed convolutional layer

 Add skip connections for better
resolution

 Instance segmentation – each object
is distinguished from each other
 Mask R-CNN, Kaiming He 2017 as

extension of Faster R-CNN to produce
pixel mask for each bounding box

37

SEMANTIC SEGMENTATION

