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OUTLINE



 Classical vision
 Hand-crafted features and 

algorithm based on expert 
knowledge

 Classical machine learning
 Hand-crafted features (pre-

processing) but ML for 
classification

 Deep learning
 Both features and classification 

are learned

 End-to-end training (from pixels 
to output)
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EVOLUTION OF COMPUTER VISION
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DEEP CNN DOMINANCE IN CV

Zou et al., “Object Detection in 20 Years: A survey, 2019Li, Johnson, and Yeung, 2019



 Modern CV is inspired by human 
vision (sensory modules)

 Hubel and Wiesel showed that 
neurons in the visual cortex had a 
small local receptive field
 Only reacted to stimuli in a limited 

region of visual field (blue dashed circles)

 Lower-level neurons with simple 
pattern response (e.g. lines of 
specific orientation)

 Higher-level neurons with larger 
receptive field and combination of 
lower-level patterns

 Neurons at higher-levels only connected to 
few at lower-level 
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ARCHITECTURE OF THE VISUAL CORTEX



 Stacked neuron architecture enables detection of complex 
patterns in any area of the visual field  convolutional 
neural networks (CNNs)

 Led to LeNet-5 architecture by Yann LeCunn for 
handwritten number recognition (MNIST)
 Fully connected layers and sigmoid activations

 Convolutional layers and pooling layers

 Why not fully connected layers for images?
 Even small images have large number of pixels resulting in huge 

networks

 CNNs solve this with partial connected layers and weight sharing
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CONVOLUTIONAL NEURAL NETWORK



 Neurons in the first layer are 
not connected to every single 
pixel in input image
 Connected to receptive field

 Stacked receptive field approach

 Hierarchical structure
 First layer – small low-level 

features

 Higher-levels – assemble lower-
level features into higher-level 
features

 Structure is common in real-world 
images
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CONVOLUTIONAL LAYERS



 Note: the actual operation 
performed is cross-correlation 
(no-flipping)

 Neuron (row, column) 𝑖, 𝑗 is 
connected to neurons in previous 
layer within receptive field
 Row 𝑖, 𝑖 + 𝑓ℎ − 1

 𝑓ℎ - height of receptive field

 Column 𝑗, 𝑗 + 𝑓𝑤 − 1
 𝑓𝑤 - width of receptive field

 Note: this is a causal filter though 
shown as symmetric

 Zero padding used to keep 
output/input layers of same size
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CONVOLUTIONAL LAYER CONNECTIONS



 Stride can be used to connect a 
large input layer to smaller 
output layer

 Change the spacing the of the 
receptive field

 Dramatically reduce model 
computational complexity 
(squared)

 Height and width stride can be 
different
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CONVOLUTIONAL LAYERS STRIDE



 Filters = convolutional kernels

 Size of the kernel is the receptive 
field for the neuron

 Feature map – output of the 
“convolution” operation

 Highlights areas in an image that 
activate the filter most

 For CNNs, the filters are not 
defined manually!

 Learn most useful filters for a task

 Higher layers will learn to combine 
into more complex patterns
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FILTERS
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VISUALIZING WEIGHTS AND FEATURES

See Szeliski 2e, Ch 5.4.5



 Each convolution layer has 
multiple filters
 Stacked 3D output (1 feature map 

for each filter)

 Each neuron in a feature map 
shares the same parameters 
(weights and bias)

 Neurons in different feature maps 
use different parameters

 Neuron’s receptive field applies to 
all feature maps of previous layer

 Note input images often have 
multiple sublayers (channels)
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STACKING MULTIPLE FEATURE MAPS I



 Output of a neuron in a 
convolutional layer

 𝑧𝑖,𝑗,𝑘 - output of neuron in row 𝑖, 
column, 𝑗, in feature map 𝑘 of the 
convolutional layer 𝑙

 𝑏𝑘 - bias term for feature map 𝑘 (in 
layer 𝑙)
 Tweaks overall brightness of feature map 

𝑘
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STACKING MULTIPLE FEATURE MAPS II

 𝑠ℎ, 𝑠𝑤 - vertical and horizontal 
strides

 𝑓ℎ, 𝑓𝑤 - height and width of receptive 
field (kernel)

 𝑓𝑛′ - number of feature maps in 
previous (lower layer)

 𝑥𝑖′,𝑗′,𝑘′ - output of neuron located in 
layer 𝑙 − 1, row 𝑖′, column 𝑗′, feature 
map 𝑘

 𝑤𝑢,𝑣,𝑘′,𝑘 - connection weight between 
any neuron in feature map 𝑘 of the 
layer 𝑙 and its input located at row 
𝑢, column 𝑣 (relative to the 
neuron’s receptive field), and feature 
map 𝑘′



 Though much smaller the fully connected networks, CNNs 
still use significant amount of RAM

 During training, the reverse pass of backpropagation 
requires all the intermediate values computed during the 
forward pass
 Need to have enough for all layers in the network
 Forward pass can release memory after each layer is computed 

(only two consecutive layers required)

 Out-of-memory error
 Reduce mini-batch size, increase stride, remove layers, change 

precision (16-bit vs 32-bit floats or use int), or distribute the CNN 
across devices
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MEMORY REQUIREMENTS



 Subsample input in order to 
reduce computational load, 
memory usage, and number of 
parameters (reduce risk of 
overfitting)

 Aggregate over the receptive field 
 Aggregate functions such as max 

(most popular) or mean
 Max tends to work better by 

preserving only the strongest feature 
 cleaner signal, more invariance, 
less compute

 Stride gives downsampling
 Pooling kernel size can be even
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POOLING LAYERS

Max pooling layers (2x2 kernel, stride=2, no padding)



 Introduces some level of invariance 
to small translations
 Small image shifts result in same 

response

 Additionally small invariance to rotation 
and scale with max pool

 Max pool every few CNN layers for 
invariance at larger scale
 Useful when task should be invariant 

(e.g. image classification)

 Drawbacks
 Destructive – 2x2, stride 2 drops 75% of 

input values

 Invariance not always desirable (e.g. 
semantic segmentation should have 
equivariance)
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POOLING LAYERS INVARIANCE



 Typical CNN architecture
 Stack a few convolutional layers 

(each followed by ReLU layer for 
non-linearity)

 Pooling layer

 Repeat Conv + ReLU + Pool

 Top layers are regular 
feedforward neural network which 
is usually fully connected layers 
(+ReLUs)

 Final layer outputs the prediction 
(e.g. softmax for class 
probabilities)

 Input kernel can be larger since generally 
only 3 sublayers (RGB channels)

 Conv layers use stacked small 3x3 kernels 
since it is more computationally efficient 
and perform better than larger

 Number of filters increases at higher layers
 Few low-level patterns, but more ways to 

combine

 Double #filters after pooling (stride 2)

 Flatten conv output before fully connected 
dense layer
 Add dropout to avoid overfitting
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CNN ARCHITECTURES



 Variants of basic CNN 
architecture have been 
developed

 Benchmark with ImageNet 
Challenge
 Large scale with 1M images and 

1000 classes

 Much more complicated than any 
benchmark at the time (~2010)

 Dramatic drop in top-five error 
from 26% to 2.3% in 6 years
 Bigger is better

18

ILSVRC IMAGENET CHALLENGE



 Network of Yann LeCun (1998) 
[NYU] designed for handwritten 
digit recognition (MNIST)

 Images normalized at input

 No padding  smaller size each 
layer

 Average pool has learnable 
coefficient and bias term

 Limited C3-S2 map connections

 Output square Euclidean distance

 Similar cross-entropy
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LENET-5

http://yann.lecun.com/exdb/lenet/index.html

http://yann.lecun.com/exdb/lenet/index.html


 2013 ImageNet winner
 17% top-5 error rate (26% for 2nd place)

 Alex Krizhevsky, Ilya Sutskever, and 
Geoffrey Hinton [U Toronto]

 Similar to LeNet-5 but larger and 
deeper

 First to stack convolutional layers 
directly on top of one another (no 
pooling in between)

 To reduce overfitting
 50% dropout of layers F9 and F10

 Data augmentation

 Local response normalization used to 
inhibit neighboring feature maps
 Encourage different feature maps to 

specialize, push neighbors apart, and 
improve generalization
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ALEXNET

ZF Net is an AlexNet variant with tweaked hyperparameters



 Popular technique from Hinton 2012 
and Srivastava et al. 2014
 1-2% accuracy boost (even SOTA)

 At each training step, a neuron has a 
probability of being ignored (dropped 
out)
 Neuron can be active during next training step

 Dropout rate generally between 10-50%
 20-30% for recurrent neural networks

 40-50% for CNNs

 Forces networks to diversify
 Neurons cannot co-adapt with neighbors

 Cannot rely only an a few input neurons

 Less sensitive to slights changes in input

 ~Average of many networks
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DROPOUT



 Artificially increase training 
dataset size by generating 
realistic variants of training 
instances
 Ideally, shouldn’t be able to 

distinguish real from augmented 
example

 Reduces overfitting 
(regularization technique)

 Common augmentations
 Small shifts, rotation, resize (scaling)
 Horizontal flip – orientation 

invariance
 Vary contrast – lighting condition 

invariance

22

DATA AUGMENTATION



 2014 ILSVRC Winner
 <7% top-5 error rate

 Christian Szegedy et al. [Google]

 Current versions Inception-v3 and Inception-v4 
(GoogLeNet + ResNet)

 Much deeper architecture than previous 
CNN (large stack)
 Much fewer parameters (6M vs. 60M AlexNet)

 Inception layers for parameter efficiency

 Use of 1x1 convolutions as a bottleneck 
layers

 Local response normalization to learn a 
wide variety of features

 Classification task with multiple (max) pool 
to reduce size (avg. final 7x7 map)
 No need for multiple fully connected (FC) layers 

to save parameters
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GOOGLENET (INCEPTION)



 Parallel convolutions
 3x3+1(S) = 3x3 kernel, stride 1, “same” padding

 All use ReLU activation

 2nd convolution layer
 Different kernel size for patterns at different 

scale

 Stacked conv for more complex patterns than 
single linear convolution

 Depth concat
 All layers have the same outputs size

 Stack 2nd layer outputs depthwise

 1x1 bottleneck layers
 Fewer output than input dimension

 Fewer parameters, faster training, improved 
generalization 

 Not spatial but depth patterns
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INCEPTION MODULE



 2014 ILSVRC runner-up

 Simonyan and Zisserman [Oxford]

 Classical architecture

 Stacked 2-3 conv + pool layers

 Variants of 16 or 19 conv layers

 3 FC classification layers

 Used many 3x3 filters
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VGGNET



 2015 ILSVRC winner
 <3.6% top-5 error rate

 Kaiming He et. Al [Microsoft]

 Deeper with fewer parameters
 152 layer winner

 Variants of 34, 50, and 101 layers

 Skip (shortcut) connections
 Signal passed into up one layer and a further 

layers ahead

 Build network on residual units (RUs)

 Batch normalization (pg 338)
 Better gradient conditioning (vanishing 

gradient)

 Standardize inputs then rescales and offsets 

 Acts as a regularizer (e.g. no need for dropout)
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RESNET



 Signal feeding layer is also 
added to the output of a layer 
higher in the stack

 Instead of modeling function 
ℎ(𝑥), it models 𝑓 𝑥 = ℎ 𝑥 −
𝑥

 Faster weight update (0 
initialization)

 Regular networks output 0

 Skip connection copies input 
(identity function)
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RESIDUAL LEARNING I



 Skip connection bypass layer 
blocking
 Input signal can propagate to 

higher levels

 Can train layers even if lower 
layers have not started learning 
yet

 Feature map size and depth 
change
 Skip connection prevents direct 

addition after resize

 1x1 convolution, stride 2, and 
output matched kernel size
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RESIDUAL LEARNING II



 GoogLeNet variant
 Combines GoogLeNet + ResNet

 Inception modules replaced with 
depthwise separable convolution 
layer

 Chollet 2016 (Keras author)

 Separable convolution layer
 Separate spatial and depth 

 1 spatial filter per input channel

 Use on layers with many feature 
channels (not on input/early layers)

 Fewer parameters, less memory, 
fewer computations, and generally 
perform better
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XCEPTION



 2018 ILSVRC winner
 Squeeze-and-Excitation Network

 2.25% top-5 error rate

 Built on Inception (SE-Inception) and 
ResNets (SE-ResNet)

 SE block
 Global average pool: mean of each 

feature map

 “Squeeze” (bottleneck)
 Dramatically reduce number of maps for low 

dimensional embedding of feature 
distribution

 Force SE block to learn general 
representations of feature combinations

 Output: recalibration vector (boost 
normally co-occurring features)

30

SENET



 Analyze output of attached 
unit to learn features that are 
usually most active together 
(depth search)

 Recognizes features that 
respond together (mouth, nose, 
eyes) and boosts features that 
are missing/low response (e.g. 
eyes)

 Recalibration steps solves 
ambiguity when feature is 
confused with something else 
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SE BLOCK



 Don’t implement models from 
scratch by hand, use existing 
implementations

 Known as backbone network

 Models pretrained on ImageNet

 Good general features

 Models expect specific size and 
pre-processing (e.g. normalization)

 Only requires a few lines of 
code

 Transfer learning

 Utilize strong backbone and 
adjust last layers for a specific 
task

 Useful when not working with 
ImageNet classes (all the time) 
and with limited training data

 Initialize network with 
ImageNet weights and only 
train higher layers (e.g. 
classification or minimal conv)
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PRETRAINED MODELS AND TRANSFER LEARNING



 Classification – identify the image 
class

 Localization – provide a bounding 
box for the image class
 Expressed as a regression task [x, y, 

w, h]
 Assumption of a single object per 

image
 Much of the work is in labeling the 

data with bounding boxes
 Many tools exist (e.g. VGG Image 

Annotator, LabelImg, OpenLabeler, 
ImgLab, LabelBox, Suervisely)

 Evaluated with intersection over 
union (IoU) the overlap
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CLASSIFICATION AND LOCALIZATION



 Task of classifying and 
localizing multiple objects in 
an image

 Early attempts used a sliding 
window
 Run classification CNN over each 

window in the image

 Need search at scale (multiple 
passes)

 Get multiple responses to same 
object  NMS
 Objectness score to remove responses

 Merge responses with high IoU
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OBJECT DETECTION



 Introduced by Long CVPR 
2015 for semantic segmentation

 Replace dense classification 
with convolutional layers
 Same number of operations but 

with different output tensor shape

 Allows processing input of any 
size (unlike dense layer with fixed 
input size)

 For larger image, equivalent to 
sliding CNN across image in 
blocks
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FULLY CONVOLUTIONAL NETWORKS



 Fast(er) R-CNN
 Apply FCN approach with region proposals 
 Fast R-CNN uses Selective Search
 Faster R-CNN uses a small region proposal network to predict bounding boxes

 YOLO (you only look once) – major shift in approach with a single CNN 
pass
 Divide image into cells and predict 5 bounding boxes per cell
 Predicts bbox offset rather than absolute location (smaller range)
 Use of anchor boxes (bounding box priors) as prototypical object dimensions

 Trained with images of different scale  detect different scale

 SSD (single shot detector) 
 Better accuracy than YOLO
 Use of MultiBox with decreasing convolutional layers for detection scales
 More bounding box predictions than YOLO
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OBJECT DETECTION ARCHITECTURES



 Each pixel is classified according to 
the class of the object it belongs
 Different objects of same class are not 

distinguished (panoptic segmentation)

 Traditional CNNs lose spatial 
resolution due to layer stride
 Need to “upsample” coarse feature map

 Use transposed convolutional layer

 Add skip connections for better 
resolution

 Instance segmentation – each object 
is distinguished from each other
 Mask R-CNN, Kaiming He 2017 as 

extension of Faster R-CNN to produce 
pixel mask for each bounding box
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SEMANTIC SEGMENTATION


