
http://www.ee.unlv.edu/~b1morris/ecg782

ECG782: MULTIDIMENSIONAL
DIGITAL SIGNAL PROCESSING
DEEP COMPUTER VISION USING CNNS

1

Géron Chapter 14

http://www.ee.unlv.edu/~b1morris/ecg782

Biological Inspiration

Convolutional Layers

Pooling Layers

CNN Architectures

Object Detection

Semantic Segmentation

2

OUTLINE

 Classical vision
 Hand-crafted features and

algorithm based on expert
knowledge

 Classical machine learning
 Hand-crafted features (pre-

processing) but ML for
classification

 Deep learning
 Both features and classification

are learned

 End-to-end training (from pixels
to output)

3

EVOLUTION OF COMPUTER VISION

4

DEEP CNN DOMINANCE IN CV

Zou et al., “Object Detection in 20 Years: A survey, 2019Li, Johnson, and Yeung, 2019

 Modern CV is inspired by human
vision (sensory modules)

 Hubel and Wiesel showed that
neurons in the visual cortex had a
small local receptive field
 Only reacted to stimuli in a limited

region of visual field (blue dashed circles)

 Lower-level neurons with simple
pattern response (e.g. lines of
specific orientation)

 Higher-level neurons with larger
receptive field and combination of
lower-level patterns

 Neurons at higher-levels only connected to
few at lower-level

5

ARCHITECTURE OF THE VISUAL CORTEX

 Stacked neuron architecture enables detection of complex
patterns in any area of the visual field convolutional
neural networks (CNNs)

 Led to LeNet-5 architecture by Yann LeCunn for
handwritten number recognition (MNIST)
 Fully connected layers and sigmoid activations

 Convolutional layers and pooling layers

 Why not fully connected layers for images?
 Even small images have large number of pixels resulting in huge

networks

 CNNs solve this with partial connected layers and weight sharing

6

CONVOLUTIONAL NEURAL NETWORK

 Neurons in the first layer are
not connected to every single
pixel in input image
 Connected to receptive field

 Stacked receptive field approach

 Hierarchical structure
 First layer – small low-level

features

 Higher-levels – assemble lower-
level features into higher-level
features

 Structure is common in real-world
images

7

CONVOLUTIONAL LAYERS

 Note: the actual operation
performed is cross-correlation
(no-flipping)

 Neuron (row, column) 𝑖, 𝑗 is
connected to neurons in previous
layer within receptive field
 Row 𝑖, 𝑖 + 𝑓ℎ − 1

 𝑓ℎ - height of receptive field

 Column 𝑗, 𝑗 + 𝑓𝑤 − 1
 𝑓𝑤 - width of receptive field

 Note: this is a causal filter though
shown as symmetric

 Zero padding used to keep
output/input layers of same size

8

CONVOLUTIONAL LAYER CONNECTIONS

 Stride can be used to connect a
large input layer to smaller
output layer

 Change the spacing the of the
receptive field

 Dramatically reduce model
computational complexity
(squared)

 Height and width stride can be
different

9

CONVOLUTIONAL LAYERS STRIDE

 Filters = convolutional kernels

 Size of the kernel is the receptive
field for the neuron

 Feature map – output of the
“convolution” operation

 Highlights areas in an image that
activate the filter most

 For CNNs, the filters are not
defined manually!

 Learn most useful filters for a task

 Higher layers will learn to combine
into more complex patterns

10

FILTERS

11

VISUALIZING WEIGHTS AND FEATURES

See Szeliski 2e, Ch 5.4.5

 Each convolution layer has
multiple filters
 Stacked 3D output (1 feature map

for each filter)

 Each neuron in a feature map
shares the same parameters
(weights and bias)

 Neurons in different feature maps
use different parameters

 Neuron’s receptive field applies to
all feature maps of previous layer

 Note input images often have
multiple sublayers (channels)

12

STACKING MULTIPLE FEATURE MAPS I

 Output of a neuron in a
convolutional layer

 𝑧𝑖,𝑗,𝑘 - output of neuron in row 𝑖,
column, 𝑗, in feature map 𝑘 of the
convolutional layer 𝑙

 𝑏𝑘 - bias term for feature map 𝑘 (in
layer 𝑙)
 Tweaks overall brightness of feature map

𝑘

13

STACKING MULTIPLE FEATURE MAPS II

 𝑠ℎ, 𝑠𝑤 - vertical and horizontal
strides

 𝑓ℎ, 𝑓𝑤 - height and width of receptive
field (kernel)

 𝑓𝑛′ - number of feature maps in
previous (lower layer)

 𝑥𝑖′,𝑗′,𝑘′ - output of neuron located in
layer 𝑙 − 1, row 𝑖′, column 𝑗′, feature
map 𝑘

 𝑤𝑢,𝑣,𝑘′,𝑘 - connection weight between
any neuron in feature map 𝑘 of the
layer 𝑙 and its input located at row
𝑢, column 𝑣 (relative to the
neuron’s receptive field), and feature
map 𝑘′

 Though much smaller the fully connected networks, CNNs
still use significant amount of RAM

 During training, the reverse pass of backpropagation
requires all the intermediate values computed during the
forward pass
 Need to have enough for all layers in the network
 Forward pass can release memory after each layer is computed

(only two consecutive layers required)

 Out-of-memory error
 Reduce mini-batch size, increase stride, remove layers, change

precision (16-bit vs 32-bit floats or use int), or distribute the CNN
across devices

14

MEMORY REQUIREMENTS

 Subsample input in order to
reduce computational load,
memory usage, and number of
parameters (reduce risk of
overfitting)

 Aggregate over the receptive field
 Aggregate functions such as max

(most popular) or mean
 Max tends to work better by

preserving only the strongest feature
 cleaner signal, more invariance,
less compute

 Stride gives downsampling
 Pooling kernel size can be even

15

POOLING LAYERS

Max pooling layers (2x2 kernel, stride=2, no padding)

 Introduces some level of invariance
to small translations
 Small image shifts result in same

response

 Additionally small invariance to rotation
and scale with max pool

 Max pool every few CNN layers for
invariance at larger scale
 Useful when task should be invariant

(e.g. image classification)

 Drawbacks
 Destructive – 2x2, stride 2 drops 75% of

input values

 Invariance not always desirable (e.g.
semantic segmentation should have
equivariance)

16

POOLING LAYERS INVARIANCE

