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OUTLINE



 Classical vision
 Hand-crafted features and 

algorithm based on expert 
knowledge

 Classical machine learning
 Hand-crafted features (pre-

processing) but ML for 
classification

 Deep learning
 Both features and classification 

are learned

 End-to-end training (from pixels 
to output)
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EVOLUTION OF COMPUTER VISION
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DEEP CNN DOMINANCE IN CV

Zou et al., “Object Detection in 20 Years: A survey, 2019Li, Johnson, and Yeung, 2019



 Modern CV is inspired by human 
vision (sensory modules)

 Hubel and Wiesel showed that 
neurons in the visual cortex had a 
small local receptive field
 Only reacted to stimuli in a limited 

region of visual field (blue dashed circles)

 Lower-level neurons with simple 
pattern response (e.g. lines of 
specific orientation)

 Higher-level neurons with larger 
receptive field and combination of 
lower-level patterns

 Neurons at higher-levels only connected to 
few at lower-level 
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ARCHITECTURE OF THE VISUAL CORTEX



 Stacked neuron architecture enables detection of complex 
patterns in any area of the visual field  convolutional 
neural networks (CNNs)

 Led to LeNet-5 architecture by Yann LeCunn for 
handwritten number recognition (MNIST)
 Fully connected layers and sigmoid activations

 Convolutional layers and pooling layers

 Why not fully connected layers for images?
 Even small images have large number of pixels resulting in huge 

networks

 CNNs solve this with partial connected layers and weight sharing
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CONVOLUTIONAL NEURAL NETWORK



 Neurons in the first layer are 
not connected to every single 
pixel in input image
 Connected to receptive field

 Stacked receptive field approach

 Hierarchical structure
 First layer – small low-level 

features

 Higher-levels – assemble lower-
level features into higher-level 
features

 Structure is common in real-world 
images
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CONVOLUTIONAL LAYERS



 Note: the actual operation 
performed is cross-correlation 
(no-flipping)

 Neuron (row, column) 𝑖, 𝑗 is 
connected to neurons in previous 
layer within receptive field
 Row 𝑖, 𝑖 + 𝑓ℎ − 1

 𝑓ℎ - height of receptive field

 Column 𝑗, 𝑗 + 𝑓𝑤 − 1
 𝑓𝑤 - width of receptive field

 Note: this is a causal filter though 
shown as symmetric

 Zero padding used to keep 
output/input layers of same size
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CONVOLUTIONAL LAYER CONNECTIONS



 Stride can be used to connect a 
large input layer to smaller 
output layer

 Change the spacing the of the 
receptive field

 Dramatically reduce model 
computational complexity 
(squared)

 Height and width stride can be 
different
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CONVOLUTIONAL LAYERS STRIDE



 Filters = convolutional kernels

 Size of the kernel is the receptive 
field for the neuron

 Feature map – output of the 
“convolution” operation

 Highlights areas in an image that 
activate the filter most

 For CNNs, the filters are not 
defined manually!

 Learn most useful filters for a task

 Higher layers will learn to combine 
into more complex patterns
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FILTERS
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VISUALIZING WEIGHTS AND FEATURES

See Szeliski 2e, Ch 5.4.5



 Each convolution layer has 
multiple filters
 Stacked 3D output (1 feature map 

for each filter)

 Each neuron in a feature map 
shares the same parameters 
(weights and bias)

 Neurons in different feature maps 
use different parameters

 Neuron’s receptive field applies to 
all feature maps of previous layer

 Note input images often have 
multiple sublayers (channels)
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STACKING MULTIPLE FEATURE MAPS I



 Output of a neuron in a 
convolutional layer

 𝑧𝑖,𝑗,𝑘 - output of neuron in row 𝑖, 
column, 𝑗, in feature map 𝑘 of the 
convolutional layer 𝑙

 𝑏𝑘 - bias term for feature map 𝑘 (in 
layer 𝑙)
 Tweaks overall brightness of feature map 

𝑘
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STACKING MULTIPLE FEATURE MAPS II

 𝑠ℎ, 𝑠𝑤 - vertical and horizontal 
strides

 𝑓ℎ, 𝑓𝑤 - height and width of receptive 
field (kernel)

 𝑓𝑛′ - number of feature maps in 
previous (lower layer)

 𝑥𝑖′,𝑗′,𝑘′ - output of neuron located in 
layer 𝑙 − 1, row 𝑖′, column 𝑗′, feature 
map 𝑘

 𝑤𝑢,𝑣,𝑘′,𝑘 - connection weight between 
any neuron in feature map 𝑘 of the 
layer 𝑙 and its input located at row 
𝑢, column 𝑣 (relative to the 
neuron’s receptive field), and feature 
map 𝑘′



 Though much smaller the fully connected networks, CNNs 
still use significant amount of RAM

 During training, the reverse pass of backpropagation 
requires all the intermediate values computed during the 
forward pass
 Need to have enough for all layers in the network
 Forward pass can release memory after each layer is computed 

(only two consecutive layers required)

 Out-of-memory error
 Reduce mini-batch size, increase stride, remove layers, change 

precision (16-bit vs 32-bit floats or use int), or distribute the CNN 
across devices
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MEMORY REQUIREMENTS



 Subsample input in order to 
reduce computational load, 
memory usage, and number of 
parameters (reduce risk of 
overfitting)

 Aggregate over the receptive field 
 Aggregate functions such as max 

(most popular) or mean
 Max tends to work better by 

preserving only the strongest feature 
 cleaner signal, more invariance, 
less compute

 Stride gives downsampling
 Pooling kernel size can be even
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POOLING LAYERS

Max pooling layers (2x2 kernel, stride=2, no padding)



 Introduces some level of invariance 
to small translations
 Small image shifts result in same 

response

 Additionally small invariance to rotation 
and scale with max pool

 Max pool every few CNN layers for 
invariance at larger scale
 Useful when task should be invariant 

(e.g. image classification)

 Drawbacks
 Destructive – 2x2, stride 2 drops 75% of 

input values

 Invariance not always desirable (e.g. 
semantic segmentation should have 
equivariance)
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POOLING LAYERS INVARIANCE




