# ECG782: MULTIDIMENSIONAL DIGITAL SIGNAL PROCESSING

ATTENTION AND TRANSFORMERS

#### OUTLINE

- Overview of State of CV/AI
- Recurrent Neural Networks
- Attention
- Transformers

## STATE OF COMPUTER VISION/AI

- Reached the point of real solutions
  - Images in → understanding out
- Killer apps can rely on AI/CV solutions
- Advances come quickly

 No dream of just using vision for DARPA Grand or Urban Challenges (2007)



Sep 24, 2014

IN CS, IT CAN BE HARD TO EXPLAIN THE DIFFERENCE BETWEEN THE EASY AND THE VIRTUALLY IMPOSSIBLE.

#### DRIVERS FOR INNOVATION

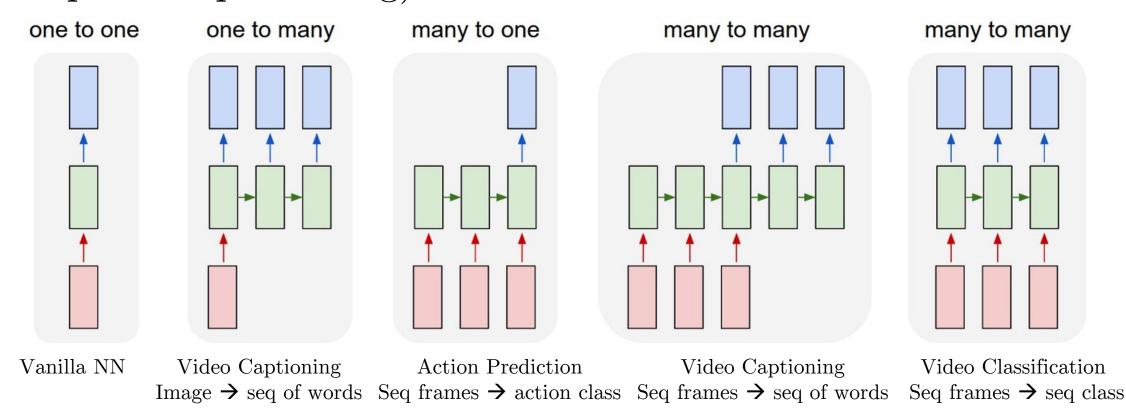
- Open access culture in CV community
- Strong review process
  - Review process taken very seriously, associated pride → high quality reviews, thoughtful decision making process, rebuttal "conversation"
  - Preprint servers (arXiv) rapidly advertise
- Large benchmark datasets
  - ImageNet changed the world direct comparison for algorithms, democratization of research (not limited just to ivory towers)
- High quality code repositories
  - Code expected to be viewed by others and used. Sure, self-serving because you get more citations/references when you make code available but again makes comparison possible/fair → leads to innovations as parallel approaches to build off of others
- Abundance of frameworks and tools to make vision and AI computationally feasible

#### OUTLINE

- Overview of State of CV/AI
- Recurrent Neural Networks
- Attention
- Transformers

#### RNN BACKGROUND

- Up to now, we have assumed fixed-size inputs and outputs
- How can we handle more complicated scenarios (such as sequential processing)?

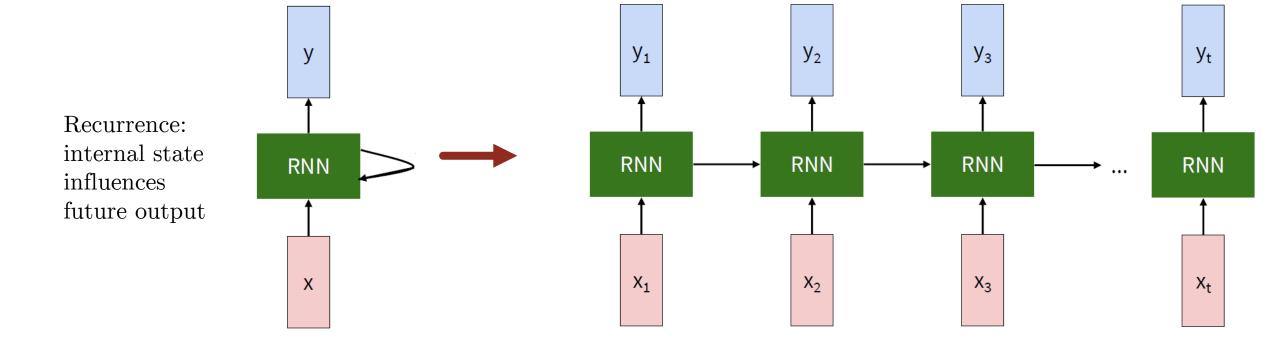


#### RNN MOTIVATION

- These tasks require models that can:
  - Handle variable-length input and output sequences
  - Preserve temporal structure and order
  - Capture long-range dependencies
- Considerations:
  - Long-range dependencies: how to learn which past inputs are relevant
  - Parallelizability: can model be parallelized across time steps
  - Compute/memory use: how does this scale with sequence length
  - Inductive bias: how well do model capture temporal/locality structure

## RECURRENT NEURAL NETWORK (RNN)

- RNNs have "internal state"
   that is updated as the sequence is processed
  - Unrolled RNN



## RNN EQUATIONS

Hidden state update

$$h_t = f_W(h_{t-1}, x_t)$$

- New state
- Input at time *t*
- Old state
- Function with parameters W

Output decode

$$y_t = f_D(h_t)$$

- Output
- New state
- Function with different parameters *D*

#### RNN SUMMARY

- Advantages
  - Can process inputs of any length
  - Each step can use information from all previous steps (in theory)
  - Model size is fixed, regardless of sequence length
  - Shared weights across time → enforces temporal consistency

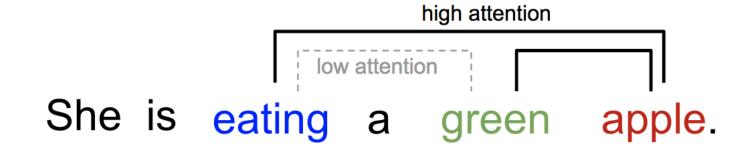
- Disadvantages
  - Slow training due to sequential/recurrent computation
  - Hard to capture long-term dependencies
  - Vanishing/exploding gradients
    - LSTM/GRU variants use gating mechanism to control flow of info over time

#### OUTLINE

- Overview of State of CV/AI
- Recurrent Neural Networks
- Attention
- Transformers

## ATTENTION

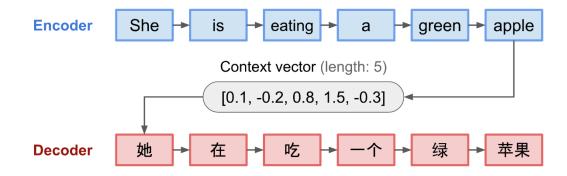
What we should attend to or focus on to answer a question (start with NLP)



Seeing word eating leads to expectation of a food soon in the sentence

## SEQ2SEQ LIMITATIONS

• Use of RNN to encode a sentence (e.g. for translation)

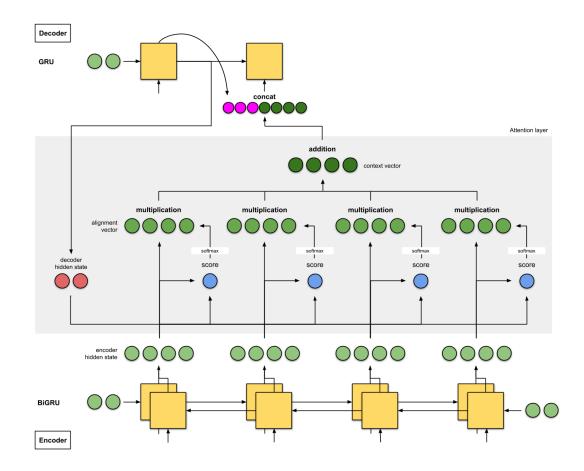


 Full sentence summarized/embed into fixed length context vector

- Read input word by word,
   then generate output word by word
  - Must do full translation based on summary of everything read
- Tends to forget for longer sequences
  - Try to do a translation after reading a long paragraph

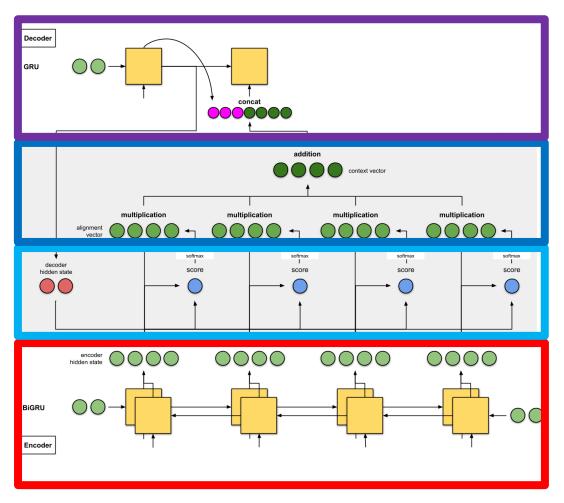
#### ATTENTION LAYER I

- Incorporate encodings from each time step (word)
  - Focus on useful parts of input (alignment)
- Learn alignment from data



#### ATTENTION LAYER II

- Encoder to embed input and provide hidden state/representation
- Attention weights computed at each time step
  - Score between decoder hidden state and all input hidden states
- Context vector to combine inputs
- Decoder makes prediction on weighted sum of inputs (context)



#### ATTENTION LAYER III

Length n input and length m output

$$\mathbf{x} = [x_1, x_2, \dots, x_n]$$
$$\mathbf{y} = [y_1, y_2, \dots, y_m]$$

• Input encodings

$$\boldsymbol{h}_i = [\overrightarrow{\boldsymbol{h}}_i^{\top}; \overleftarrow{\boldsymbol{h}}_i^{\top}]^{\top}, i = 1, \dots, n$$

• Output encoding (t = 1, ..., m) $s_t = f(s_{t-1}, y_{t-1}, \mathbf{c}_t)$   $\blacksquare$  Context vector for output  $y_t$ 

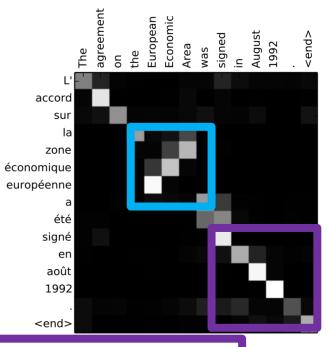
$$\mathbf{c}_{t} = \sum_{i=1}^{n} \alpha_{t,i} \mathbf{h}_{i}$$

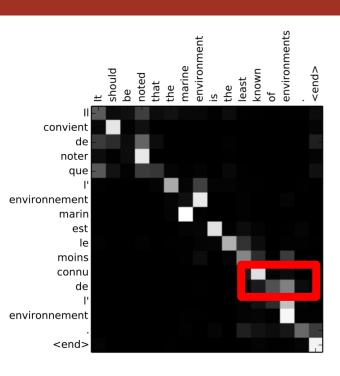
$$\alpha_{t,i} = \operatorname{align}(y_{t}, x_{i})$$

$$= \frac{\exp(\operatorname{score}(\mathbf{s}_{t-1}, \mathbf{h}_{i}))}{\sum_{i'=1}^{n} \exp(\operatorname{score}(\mathbf{s}_{t-1}, \mathbf{h}_{i'}))}$$

- $\alpha_{t,i}$  how well words  $y_t$  and  $x_i$  are aligned (contribution)
- Score function (e.g. dot product) for similarity
  - Other functions can be learned

#### VISUALIZATION OF ATTENTION





- One-to-one mapping
- Ordering of words matters
- Output can depend on more than one input word

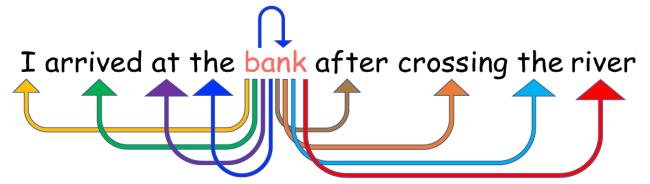
### OUTLINE

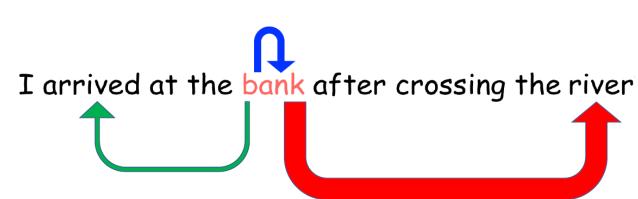
- Overview of State of CV/AI
- Recurrent Neural Networks
- Attention
- Transformers

#### TRANSFORMER OVERVIEW

- Avoid recurrence/convolution (attention is all you need)
  - Faster to train
  - Constant number of steps for processing (do not wait until end of sentence)
- Attention for relationship within sentence
- Meaning of bank doesn't have to wait until seeing river

- Key idea: self attention
  - Compare "tokens"





# TRANSFORMER – QUERY/KEY/VALUE

- Three learnable embeddings for each token
- Query asking for information to better understand itself
- Key response to query request → used to compute attention weights
- Value give information → used to compute context

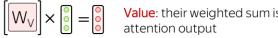
Each vector receives three representations ("roles")



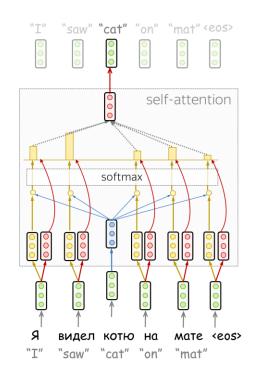
"Hey there, do you have this information?"

 $\left[\begin{array}{c} W_{K} \end{array}\right] \times \left[\begin{array}{c} 0 \\ 0 \\ 0 \end{array}\right] = \left[\begin{array}{c} 0 \\ 0 \\ 0 \end{array}\right]$  Key: vector **at** which the query looks to compute weights

"Hi, I have this information - give me a large weight!"

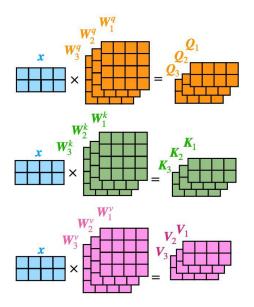


"Here's the information I have!"

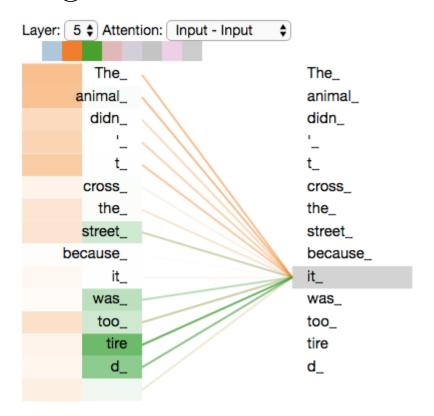


#### TRANSFORMER MULTI-HEAD ATTENTION

- Enable each token to relate to other tokens in multiple ways
- Use multiple self-attention mechanisms with their own query, key, and value matrices



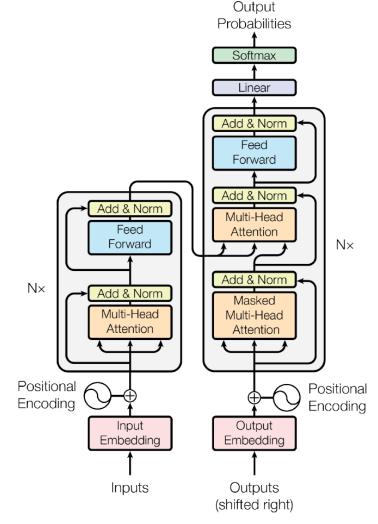
 $\blacksquare$  Orange head – it = animal



 $\blacksquare$  Green head – it = tired

## TRANSFORMER MODEL

- Multi-head attention (self attention) in encoder (left) and decoder (right)
- Residual connections and layer normalization – gradient propagation and convergence
- Feed forward process info
- Positional encoding explicitly add position infomation



Vaswai et al. NeurIPS 2017

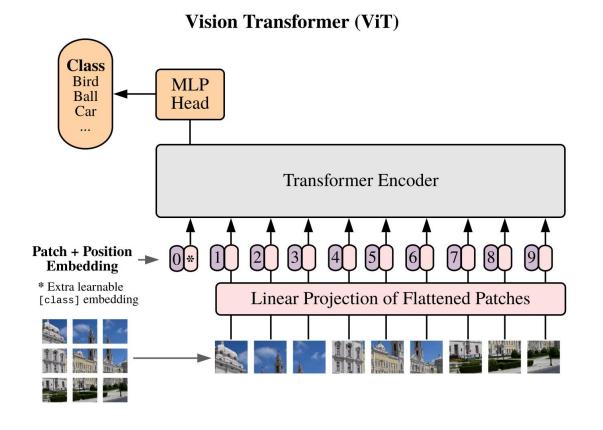
# VISUAL ATTENTION

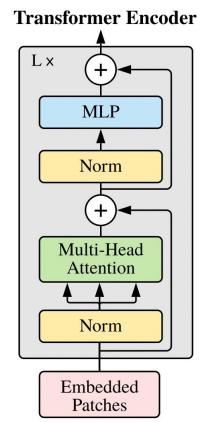




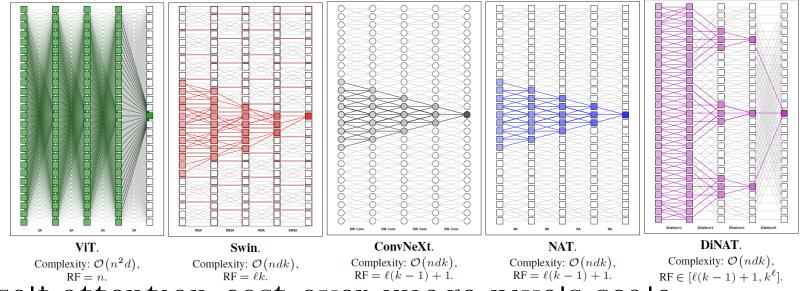
## VISION TRANSFORMER (VIT)

- How can Transformer success be used in vision tasks?
  - E.g. words = image patches





#### POPULAR VARIANTS



- Handle self-attention cost over image pixels scale
- Shifted window (Swin) hierarchical feature maps for scale, local attention
- Dilated Neighborhood Attention (DiNAT) dilated computation for larger receptive field → global context

#### TRANSFORMERS AND COMPUTER VISION

- Top performer is many vision benchmarks (e.g. ImageNet classification)
- Everyone is converting their models to Transformer variants
- CVPR2022 papers
  - Zhai, Scaling Vision Transformer
  - Chavan, Vision Transformer Slimming: Multi-Dimension
     Searching in Continuous Optimization Space

#### REFERENCES

- Attention is All You Need, Vaswani, Shazeer,
   Parmar, Uszkoreit, Jones, Gomes, Kaizer,
   Polosukhin, 2017
- An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale, Dosovitskiy et al., 2021