
http://www.ee.unlv.edu/~b1morris/ecg782/

Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu

ECG782: Multidimensional

Digital Signal Processing

Spring 2014

TTh 14:30-15:45 CBC C313

Lecture 07

Image Pre-Processing

13/02/11

Outline

• Integral Image

• Image Structures

• Image Pyramids

2

Integral Image

• Cumulative sum image

▫ 𝑖𝑖 𝑖, 𝑗 = 𝑓(𝑘, 𝑙)𝑘≤𝑖,𝑙≤𝑗

▫ Each entry is the sum of pixels to the above left

• Used for rapid calculation of simple rectangle
feature at various scales

3

Integral Image Utility

• Any rectangular sum can be computed from the
integral image in only 4 array references

▫ With basic matrix, need to reference each pixel in
rectangular region

• Only overhead is the single pass through the
image to compute the integral image

4

Haar-Like Features

• Sum of rectangular regions

▫ Add white and subtract
black regions

• These look for intensity patterns

▫ Used in face recognition [Viola and Jones]

5

Chains

• Sequence to describe object borders

• Can use language theory models for pattern
recognition

▫ E.g. letters and grammar rules

6

Topological Structures
• Image described by elements and relationships
• Represented by graphs

▫ 𝐺 = (𝑉, 𝐸)
 𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑛} – nodes
 𝐸 = {𝑒1, 𝑒2, … , 𝑒𝑛} – relationship edges (arcs)
 Degree of node is the number of incident edges

▫ Weighted graphs have values (weight, cost) for edges
• Region adjacency graph

▫ Nodes are image regions and edges connect neighboring
regions

▫ Created from region map (labeled image)
▫ A graph cut can extract inside regions simply

7

Relational Structures

• Relations between image objects
(segmentations) are stored in a table

• Useful for higher levels of image understanding

• Relational databases are popular (MySQL,
MyMaria, PostgreSQL, Oracle)

▫ Efficient search with keys

8

Hierarchical Data Structures

• Computer vision is a difficult and requires
computational power

▫ Can’t always use brute force

• Hierarchical data structures give rise to
algorithms that operate more efficiently

▫ Use smaller subset of the data first

▫ Go to full resolution processing only when
required

9

Image Pyramids
• Matrix-pyramid

▫ Sequence of images of different resolution

▫ {𝑀𝐿, 𝑀𝐿−1, … ,𝑀0}
 Each 𝑀𝑙+1 is half the resolution of 𝑀𝑙

▫ Allows operations at different resolutions (scale)
 Half-size is ¼ pixels and 4 times speed up

• Tree-pyramid
▫ Use several resolutions simultaneously
▫ At the bottom of the tree (the highest level) are the original pixels

values
▫ Each lower level contains a mapping from 4 higher resolution

“pixels”
 Each level is a lower resolution image

• The memory for storing all images in a pyramid is only 1.33𝑁2

10

Quadtrees
• Modification of T-pyramid

▫ Less expensive representations
▫ Do not need to keep all 4 children nodes unless necessary

 No need to store 4 children with same value

• Advantages: simple algorithms for addition of images,
object areas, statistical moments

• Disadvantages: dependence on position, orientation, size
of objects
▫ Normalized shape quadtree

 Build quadtree for each object

• Have become popular in GIS mapping for layered data

11

Image Pre-Processing

• Low level operations
▫ Lowest-level of abstraction
▫ Image-to-image transformations

• Does not increase image information content
▫ Actually decreases entropy
▫ However, it can suppress irrelevant info

 Not needed for analysis task

• Improve image by suppressing unwanted distortions
and enhancing important image features
▫ Note: geometric transforms also considered
▫ Utilizes information redundancy

 Large number of similar pixels for statistical
characterization

12

Pixel Brightness Correction

• Modify pixel brightness with regard to position

• Systematic imaging degradation can be suppressed

▫ E.g. CCD sensitivity on borders

• Multiplicative error model

▫ 𝑓 𝑖, 𝑗 = 𝑒 𝑖, 𝑗 𝑔 𝑖, 𝑗

▫ 𝑓 – degraded image

▫ 𝑔 – reference (“good”) image

▫ 𝑒 – multiplicative noise, error coefficient

• Recovery of good image

▫ 𝑔 𝑖, 𝑗 =
𝑓 𝑖,𝑗

𝑒 𝑖,𝑗

▫ Estimate error by imaging a known constant value

13

Gray-Scale Transformation
• Change pixel brightness

without regard for position in
image

▫ E.g. histogram equalization

• Define a mapping between one
gray level to another

▫ Represented as a lookup table

▫ Generalizes to multi-spectral
images

 Color conversion tables

• Typically used for human
observation

▫ Contrast is needed

14

Local Pre-Processing
• Smoothing

▫ Suppress noise and other small
fluctuations

▫ Equivalent to suppression of
high frequency content

▫ Blurs sharp edges
 May lose information content

• (Sharpening) Gradient
operators
▫ Based on local derivatives of

image

▫ Suppress low frequency
content
 Accentuate edges

▫ Increases noise level

• Linear transformations
▫ Output value is a linear

combination of local
neighborhood values

▫ 𝑓 𝑖, 𝑗 =

 ℎ 𝑖 − 𝑚, 𝑗 − 𝑛 𝑔(𝑚, 𝑛)𝑚,𝑛 ∈𝑂

▫ Discrete
convolution(correlation)
definition
 Use rectangular

neighborhoods with odd
dimensions

• Non-linear transforms
▫ Non-linear relationship

between neighborhood

▫ More computationally
expensive

▫ No strict frequency
representation

15

Smoothing
• Want to edge-preserving smoothing

▫ Remove noise but leave edges

• Averaging filter
▫ Noise should be smaller in size

than smallest object of interest

▫ Significant edge blurring

▫ ℎ =
1

9

1 1 1
1 1 1
1 1 1

• Gaussian approximation
▫ Put more weight in center

▫ ℎ =
1

10

1 1 1
1 2 1
1 1 1

• Separable filters
▫ Used to significantly speed up

convolution neighborhood
operation

▫ Kernel can be factorized into the
product of two 1D vectors

 Separate convolution summations

• 2D binomial kernel (Gaussian
approximation)

• ℎ 𝑥, 𝑦 = 4− 𝑁−1 𝑁 − 1
𝑥

𝑁 − 1
𝑦

▫ 𝑁 = 3

▫ ℎ 𝑥, 𝑦 =
1

16

1 2 1
2 4 2
1 2 1

▫ ℎ(𝑥, 𝑦) =
1

4

2 1
2
1

1 2 1

▫ Elements from Pascal’s triangle

16

Averaging with Limited Data Validity

• Avoid blurring by averaging only pixels
that meet a criterion function
▫ Try to avoid including pixels from

separate features
 E.g. two sides of edge

• Define an invalid data interval [𝑚𝑖𝑛,𝑚𝑎𝑥]

• ℎ 𝑖, 𝑗 =

1 𝑓𝑜𝑟 𝑔 𝑚 + 𝑖, 𝑛 + 𝑗 ∉ [𝑚𝑖𝑛,𝑚𝑎𝑥]
0 𝑒𝑙𝑠𝑒

▫ Convolution mask defined for each
neighborhood
 Only changes invalid data

 Uses only valid data for averaging

• Define a brightness interval around
central pixel

• Use gradient strength to only average
those pixels with low gradients

17

Rotating Mask Averaging

• Non-linear smoothing technique

▫ Also sharpens image

• Idea is to determine a good neighborhood for
averaging

• Calculate average over different mask rotations

• Homogeneity of region measured by a
brightness dispersion

18

Smoothing with Rotating Mask

• Only use “best” mask for pixel replacement
▫ Looking for “stable” average

• Iterative solution convergence depends on mask size
and shape
▫ Smaller mask has smaller changes and more iterations
▫ Large mask suppresses noise faster and has more

sharpening
 Small detail is lost

19

