ECG782: Multidimensional
Digital Signal Processing

Spring 2014
TTh 14:30-15:45 CBC C313

Lecture 07
Image Pre-Processing

13/02/11

http://www.ee.unlv.edu/~bimorris/ecg782/

Outline

- Integral Image
- Image Structures
- Image Pyramids

3
Integral Image

- Cumulative sum image
; ll(l!]) = sti,lsjf(k: l)
= Each entry is the sum of pixels to the above left

- Used for rapid calculation of simple rectangle
feature at various scales

Algorithm 4.2: Integral image construction
1. Let s(7,j) denote a cumulative row sum, and set s(i,—1) = 0.
2. Let ii(7,j) be an integral image, and set ii(—1,j) = 0.

3. Make a single row-by-row pass through the image. For each pixel (i, j) calculate
the cumulative row sums s(i, j) and the integral image value #i(7, j) using

S(i:-j) =S{i,j—1)+f(‘i,j), (4‘2}

4. After completing a single pass through the image, the integral image ii is con-
structed.

|

Integral Image Utility

- Any rectangular sum can be computed from the
integral image in only 4 array references
= With basic matrix, need to reference each pixel in
rectangular region
- Only overhead is the single pass through the
image to compute the integral image

A B

o oP
C D

o) o0

Figure 4.1: Calculation of rectangle features from an integral image. The sum of pixels within
rectangle D can be obtained using four array references. Deym = ii(0) + ii(a) — (i1(8) + ii(y)),
where ii(a) is the value of the integral image at point a (and similarly for 3,4,d). © Cengage

Learning 2015.

Haar-Like Features

an:r ! \Pn
0 0.5 0

- Sum of rectangular regions i os | |
-1 e

= Add white and subtract 5 _
) igure 3.15: Haar wavelets ¥y, ¥ys.
black reglons @ Cengage Learning 2015.

o

(a) (b) (c) (d)

Figure 4.2: Rectangle-based features may be calculated from an integral image by subtraction of
the sum of the shaded rectangle(s) from the non-shaded rectangle(s). The figure shows (a,b) two-
rectangle, (c) three-rectangle, and (d) four-rectangle features. Sizes of the individual rectangles
can be varied to yield different features as well as features at different scales. Contributions
from the regions may be normalized to account for possibly unequal region sizes. © Cengage
Learning 2015.

- These look for intensity patterns
= Used in face recognition [Viola and Jones]

Chains

- Sequence to describe object borders

- Can use language theory models for pattern
recognition
= E.g. letters and grammar rules

O
00000
n

Figure 4.3: An example chain code; the reference pixel starting the chain is marked by an arrow:
00077665555556600000006444444442221111112234445652211. © Cengage Learning 2015.

.
Topological Structures

- Image described by elements and relationships
- Represented by graphs
« G = (V,E)
V ={v,vy,...,v,} — nodes
E = {e e,,...,e,} —relationship edges (arcs)
- Degree of node is the number of incident edges
> Weighted graphs have values (weight, cost) for edges
- Region adJacency graph

= Nodes are image regions and edges connect neighboring
regions

= Created from region map (labeled image)
= A graph cut can extract inside regions simply

4 1 2
3 4
5

Figure 4.5: An example region adjacency graph.
© Cengage Learning 2015.

Relational Structures

- Relations between image objects
(segmentations) are stored in a table

- Usetul for higher levels of image understanding

No. | Object name I Color | Min. row | Min. col. | Inside
1 | sun white 5 40 2

2 | sky blue 0 0 -

3 | cloud gray 20 180 2

4 | tree trunk brown 95 75 6

H tree crown green 53 63 -

6 | hill light green 97 0 -

7 | pond blue 100 160 6

Figure 4.7: Description of objects using relational structure. @ Cengage L Table 4.1: Relational table. © Cengage Learning 2015,

- Relational databases are popular (MySQL,
MyMaria, PostgreSQL, Oracle)
» Efficient search with keys

Hierarchical Data Structures

- Computer vision is a difficult and requires
computational power
» Can’t always use brute force

- Hierarchical data structures give rise to
algorithms that operate more efficiently
= Use smaller subset of the data first

= Go to full resolution processing only when
required

- o

Image Pyramids

- Matrix-pyramid
> Sequence of images of different resolution
o {Mp, M1, ..., Mo}
- Each M;,, is half the resolution of M;
> Allows operations at different resolutions (scale)
- Half-size is Y4 pixels and 4 times speed up
- Tree-pyramid
= Use several resolutions simultaneously

i Atlthe bottom of the tree (the highest level) are the original pixels
values

:]:chhllquer level contains a mapping from 4 higher resolution
pixels
- Each level is a lower resolution image
» The memory for storing all images in a pyramid is only 1.33N?

Level 0

Level 1

Figure 4.8: T-pyramid.
Level 2 © Cengage Learning 2015.

Quadtrees

Modification of T-pyramid
s Less expensive representations

= Do not need to keep all 4 children nodes unless necessary
- No need to store 4 children with same value

Advantages: simple algorithms for addition of images,
object areas, statistical moments

Disadvantages: dependence on position, orientation, size

of objects

= Normalized shape quadtree
* Build quadtree for each object

Have become popular in GIS mapping for layered data

10

1

120

121

122

123

13

0 2 3

10 1 13

120 121 122 123 Figure 4.9: Quadtree. © Cengage
Learning 2015.

=l

Image Pre-Processing

- Low level operations
= Lowest-level of abstraction
= Image-to-image transformations
- Does not increase image information content
= Actually decreases entropy
= However, it can suppress irrelevant info
- Not needed for analysis task
- Improve image by suppressing unwanted distortions
and enhancing important image features
= Note: geometric transforms also considered

= Utilizes information redundancy

- Large number of similar pixels for statistical
characterization

. s

Pixel Brightness Correction

- Modify pixel brightness with regard to position
- Systematic imaging degradation can be suppressed
= E.g. CCD sensitivity on borders
- Multiplicative error model
o f(,)) =e(i,j)g(,j)
= f — degraded image
= g — reference (“good”) image
= e — multiplicative noise, error coefficient

- Recovery of good image
- f(@.J)
) g(ll]) — e(l,])
= Estimate error by imaging a known constant value

o

Gray-Scale Transformation

- Change pixel brightness T ——
without regard for position in \\ J| ={aleanirastanhancement
. _ (b) threshold
lmage \\\ r ‘
> E.g. histogram equalization N
- Define a mapping between one |
K (c) negative
gray level to another L
= Represented as a lookup table — & 3 -
= Generalizes to multi-spectral , ,
. Figure 5.1: Some gray-scale transforma-
lmages tions. © Cengage Learning 2015.

- Color conversion ta

- Typically used for hum
observation

= Contrast is needed

Figure 5.3: Histogram equalization. (a) Original image. (b) Equalized image. © Cengage
Learning 2015.

. .|

Local Pre-Processing

- Smoothing - Linear transformations
> Suppress noise and other small > Output value is a linear
fluctuations combination of local
> Equivalent to suppression of neighborhood values
high frequency content o f(i,)) =
= Blurs sharp.edges . ¥ ¥ mmeo h(i —m,j —n)g(m,n)
- May lose information content - Discrete
» (Sharpening) Gradient convolution(correlation)
operators definition
> Based on local derivatives of - Use rectangular
image neighborhoods with odd
= Suppress low frequency dimensions
content - Non-linear transforms
- Accentuate edges > Non-linear relationship
> Increases noise level between neighborhood
= More computationally
expensive

= No strict frequency
representation

|

Smoothing

- Want to edge-preserving smoothing
= Remove noise but leave edges
- Averaging filter
= Noise should be smaller in size
than smallest object of interest
= Significant edge blurring
1 1 1
© h=7 [1 1 1]
1 1 1
- Gaussian approximation
= Put more weight in center

1111
= h=—11 2 1

10
1 1 1

Separable filters

> Used to significantly speed up
convolution neighborhood
operation

= Kernel can be factorized into the
product of two 1D vectors

- Separate convolution summations

2D binomial kernel (Gaussian
approximation)

h(x,y) = 4-(N-1) (N - 1) (N — 1)

X y
= N=3

. 1 2 1
o h(x,y)=1—62 4 2
1 2 1

2|1
© hoy) = (3) H 12 1]
1

= Elements from Pascal’s triangle

. 7
Averaging with Limited Data Validity

- Avoid blurring by averaging only pixels
that meet a criterion function

> Try to avoid including pixels from
separate features

- E.g. two sides of edge
- Define an invalid data interval [min, max]
* h(i,j) =
{1 for glm +i,n+j) & [min, max]|
0 else

= Convolution mask defined for each
neighborhood

 Only changes invalid data
- Uses only valid data for averaging
- Define a brightness interval around
central pixel

- Use gradient strength to only average
those pixels with low gradients

Figure 5.10: Averaging with limited data validity. (a) Original corrupted image. (b) Result of
corruption removal. @ Cengage Learning 2015.

- s

Rotating Mask Averaging

- Non-linear smoothing technique

> Also sharpens image
- Idea is to determine a good neighborhood for

averaging
- Calculate average over different mask rotations
i ; + t : * -+ Figure 5.11: Eight possible rotated
3x3 masks. © Cengage Learning 2015

1 2 7 8

- Homogeneity of region measured by a
brightness dispersion

Uz:% 3 (_E 3 q”) _ (5.31)

(,7)ER (i.j)ER

.
Smoothing with Rotating Mask

Algorithm 5.2: Smoothing using a rotating mask
1. Consider each image pixel (i, j).

2. Calculate dispersion for all possible mask rotations about pixel (i, j) according
to equation (5.31).

3. Choose the mask with minimum dispersion.

4. Assign to the pixel f(i,j) in the output image f the average brightness in the
chosen mask.

» Only use “best” mask for pixel replacement
= Looking for “stable” average

- Iterative solution convergence depends on mask size
and shape
= Smaller mask has smaller changes and more iterations

= Large mask suppresses noise faster and has more
sharpening
- Small detail is lost

