Adaptive background mixture models for real-time tracking

Mohammad Shirazi Brendan Morris

Improving Background Subtraction

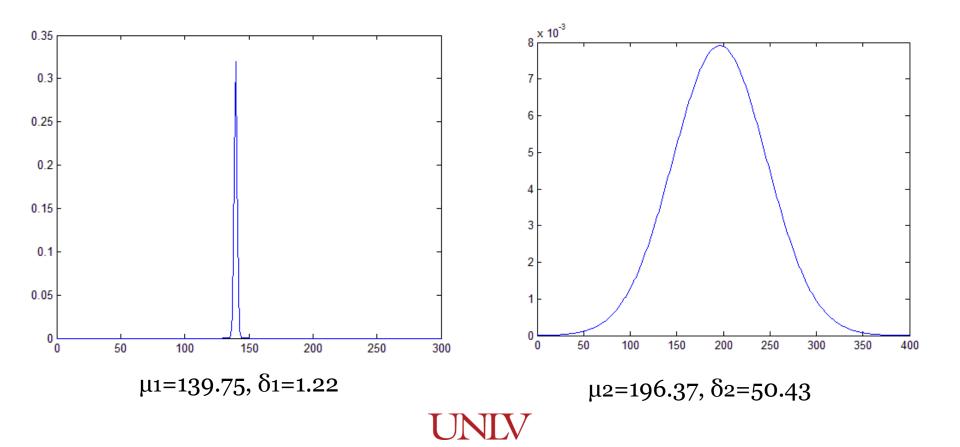
- Adaptive Background Mixture Models for Real Time Tracking
 - Chris stauffer and W.E.L. Grimson
 - Over 4000 citations since 1999

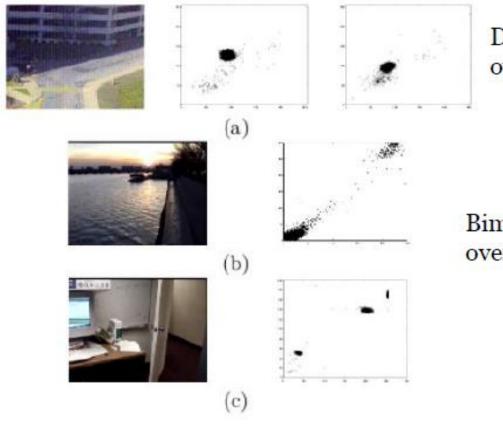
- Robust background subtraction should handle lighting changes, repetitive motion from clutter and long term scene changes
- Standard method of adaptive background (Adv)
 - It is effective where object moves continuously
 - Background is visible a significant portion of the time

- Standard method of adaptive background (Disadv)
 - It is not robust to scenes with many moving objects particularly if they move very slowly
 - <u>http://www.youtube.com/watch?v=YA_lWWheP</u> <u>W8</u>
- Recovers slowly when background is uncovered
- It has single predetermined threshold for the entire scene

- Standard method of adaptive background (Disadv)
 - It can not handle bimodal backgrounds
 - Assume rainy situation
 - pixel intensity values of background for 16 frames :
 - 139,140,141,141,138,140,140,139,240,241,243,244,180,141
 ,140,142
 - Modeling background for each 8 frame with Gaussian distribution
 - μ1=139.75, δ1=1.22
 - μ₂=196.37, δ₂=50.43

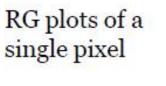
139,140,141,141,138,140,140,139,240,241,243,244,180,141,140
,142





Differing threshold over time

Bimodal distribution over time



Approach

- Modeling the values of a particular pixel as a mixture of Gaussians
- Based on the persistence and the variance of each Gaussians of the mixture, we determine which Gaussians may correspond to background color
- Pixel values that do not fit the background distributions are considered foreground

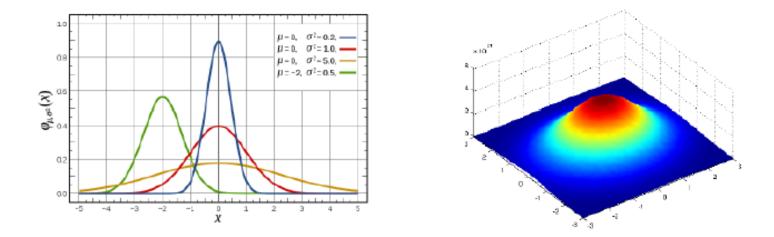
Gaussian Distribution

• Univariate

$$\mathcal{N}(x|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

• Multivariate

$$\mathcal{N}(\mathbf{x}|\mu, \mathbf{\Sigma}) = \frac{1}{(2\pi)^{D/2}} \frac{1}{|\mathbf{\Sigma}|^{1/2}} e^{-\frac{1}{2}(\mathbf{x}-\mu)^T \mathbf{\Sigma}^{-1}(\mathbf{x}-\mu)}$$



UT NTV

Online Mixture Model

• History of a pixel is known up to current time t

 $\{X_1, \dots, X_t\} = \{I(x_o, y_o, i): 1 \le i \le t\}$

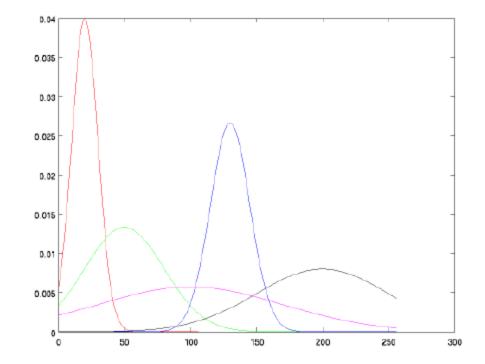
 Model the history as mixture of K Gaussian Distributions

 $P(X_t) = \sum_{i=1}^{K} w_{i,t} \mathcal{N}(X_t | u_{i,t}, \Sigma_{i,t})$

 $w_{i,t}$ - prior probability (weight) of Gaussians i

Mixture Model Example

• For grayscale image with K=5



Update the Mixture Model (Stage 1)

- Every new pixel value, X_{t+1}, is checked against the existing K Gaussian distributions until a match is found.
- A match is defined as a pixel value within 2.5 standard deviations of a distribution

Stage 2

• Match

$$\mu_{i,t+1} = (1 - \rho)\mu_{i,t} + \rho X_{t+1}$$

$$\sigma_{i,t+1}^2 = (1 - \rho)\sigma_{i,t}^2 + \rho (X_{t+1} - \mu_{i,t})^2$$

• $\rho = \alpha \mathcal{N} (X_{t+1} | \mu_{i,t}, \sigma_{i,t}^2)$
• α - is a learning rate

• Prior weights of Gaussians are updated

$$w_{i,t+1} = (1 - \alpha)w_{i,t} + \alpha(M_{i,t+1})$$

 $M_{i,t+1} = 1$ for matching Guassian or $M_{i,t+1} = 0$ for all others

Stage 3

- No Match
 - If none of the K distributions match the current pixel value, the least probable distribution is go out.
 - A new distribution with the current value as its mean value, an initially high variance, and low prior weight, is enter.
 - The mean and variance remain unchanged.

Background Model Estimation

- Gaussians are ordered by the value ω/σ
- We are interested in the Gaussian distributions which have the most <u>supporting evidence</u> = and the <u>least</u> <u>variance</u>. Why??
- For "background" distributions when a static, persistent object is visible, leading to high weight and relatively low variance.
- New object occludes the background object creation of a distribution or the increase in the variance of an existing distribution, so the variance of the moving object is expected to remain larger than a background pixel until the moving object stops

Background Estimation Example

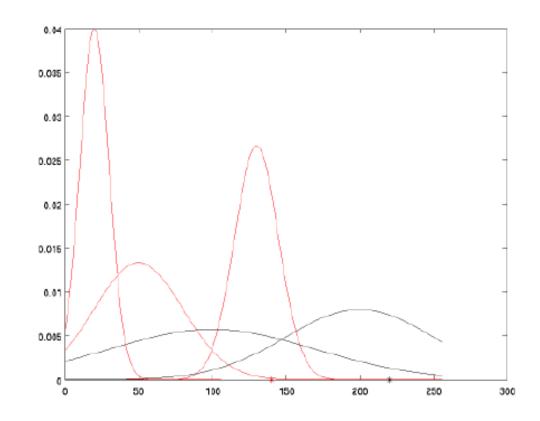
• First B distributions are selected as the background

 $B = argmin_b(\sum_{i=1}^b w_i > T)$

- As we remember, *Wi* is portion of data that is accounted for by *i* Gaussian
- T minimum portion of image expected to be background

Background Estimation Example

• After background estimation red are backgrounds and blacks are foreground



Discussion

Advantageous

- Different threshold for each pixel
- Pixel-wise thresholds adapt over time
- Objects are allowed to become part of the background without destroying the existing background model
- Provides fast recovery
- Disadvantages
 - Can not handle sudden, drastic lighting changes
 - Must have good Gaussian initialization (median filtering)
 - There are number of parameters to tune

Summary

- Simple background subtraction approaches such as fame diff, mean, and median filtering are fast
- Constant thresholds make them ill-suited for challenging real-world problems
- Adaptive background mixture model approach can handle challenging situations
- Bimodal backgrounds, long-term scene changes, and repetitive motion
- Improvements include upgrade the approach with temporal information or using region-based techniques

Thank You

• Questions?

My Background subtraction implementation using GMM at OpenCV