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Abstract—In this paper, we introduce a synergistic approach
to integrated lane and vehicle tracking for driver assistance. The
approach presented in this paper results in a final system that
improves on the performance of both lane tracking and vehicle
tracking modules. Further, the presented approach introduces a
novel approach to localizing and tracking other vehicles on the
road with respect to lane position, which provides information on
higher contextual relevance that neither the lane tracker nor ve-
hicle tracker can provide by itself. Improvements in lane tracking
and vehicle tracking have been extensively quantified. Integrated
system performance has been validated on real-world highway
data. Without specific hardware and software optimizations, the
fully implemented system runs at near-real-time speeds of 11
frames per second.

Index Terms—Active safety, computer vision, driver assistance,
intelligent vehicles, lane departure, lane tracking, vehicle tracking.

I. INTRODUCTION

ANNUALLY, between 1% and 3% of the world’s gross
domestic product is spent on the medical costs, property

damage, and other costs associated with automotive accidents.
Each year, some 1.2 million people die worldwide as a result of
traffic accidents [1]. Research into sensing systems for vehicle
safety promises safer journeys by maintaining an awareness of
the on-road environment for driver assistance. Vision for driver
assistance has been a particularly active area of research for the
past decade [2].

Research studies in computer vision for on-road safety have
involved monitoring the interior of the vehicle [3], the exterior
[4], [5], or both [6]–[8]. In this research study, we focus on
monitoring the exterior of the vehicle. Monitoring the exterior
can consist of estimating lanes [4], [9], pedestrians [10]–[12],
vehicles [13]–[17], or traffic signs [5]. Taking a human-centered
approach is integral for providing driver assistance [18]; using
the visual modality allows the driver to validate the system’s
output and to infer context.

Many prior research studies monitoring the vehicle exterior
address one particular on-road concern. By integrating infor-
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Fig. 1. Framework for integrated lane and vehicle tracking introduced in this
paper. Lane tracking and vehicle tracking modules are executed on the same
frame, sharing mutually beneficial information, to improve the robustness of
each system. System outputs are passed to the integrated tracker, which infers
full state lane and vehicle tracking information.

mation from across systems, complimentary information can
be exploited, and more contextually relevant representations of
the on-road environment can be attained.

In this paper, we introduce a synergistic approach to inte-
grated lane and vehicle tracking for driver assistance. Utiliz-
ing systems built upon works reported in the literature, we
integrate lane and vehicle tracking and achieve the following.
Lane tracking performance has been improved by exploiting
vehicle tracking results, eliminating spurious lane marking filter
responses from the search space. Vehicle tracking performance
has been improved by utilizing the lane tracking system to
enforce geometric constraints based on the road model. By
utilizing contextual information from two modules, we are able
to improve the performance of each module. The entire system
integration has been extensively quantitatively validated on
real-world data and benchmarked against the baseline systems.

Beyond improving the performance of both vehicle track-
ing and lane tracking, this paper introduces a novel approach
to localizing and tracking vehicles with respect to the ego-
lane, providing lane-level localization of other vehicles on the
road. This novel approach adds valuable safety functionality
and provides a contextually relevant representation of the on-
road environment for driver assistance, which is previously
unseen in the literature. Fig. 1 depicts an overview of the
approach detailed in this paper, and Fig. 2 shows typical system
performance.
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Fig. 2. Typical performance of integrated lane and vehicle tracking on high-
way with dense traffic. Tracked vehicles in the ego-lane are marked green. To
the left of the ego-lane, tracked vehicles are marked blue. To the right of the
ego-lane, tracked vehicles are marked red. Note the curvature estimation.

The remainder of this paper is structured as follows. In
Section II, we discuss relevant research in the literature per-
taining to on-road lane tracking and vehicle tracking for driver
assistance. In Section III, we detail the lane tracking and vehicle
tracking modules that have been utilized in this paper. In
Section IV, we introduce a synergistic framework for integrated
lane and vehicle tracking. In Section V, we provide thorough
experimental evaluation of the introduced framework, via three
separate classes of experiments. Finally, in Section VI, we pro-
vide concluding remarks and discuss future research directions.

II. RELATED RESEARCH

A. Lane Detection and Tracking

Lane tracking has been an active area of research for over
a decade [19]. At its most basic level, lane keeping for driver
assistance consists of locating lane markings, fitting the lane
markings to a lane model, and tracking their locations tempo-
rally with respect to the ego-vehicle. Image descriptors reported
in the literature for lane marking localization include adaptive
thresholds [20], [21], steerable filters [4], [9], [22], ridges [23],
edge detection, global thresholds, and top-hat filters [21]. In
[24], a classifier-based lane marker detection is employed. A
thorough side-by-side segmentation comparison of lane feature
extractors can be found in [21].

Road models used in lane detection and tracking systems
often try to approximate the clothoid structure, which is often
used in road construction [4]. This is often done via a parabolic
or cubic fitting of the lane markings to a parametric road
model [20]. In [4], this is achieved via fitting an adaptive
road template to the viewed data. In recent studies [23], [24],
random access consensus (RANSAC) has been used to fit lane
markings to parametric road models. Rural and urban roads
may contain various discontinuities, which can require more
sophisticated road modeling [25].

Lane tracking has often been implemented using Kalman
filters, or variations such as the extended Kalman filter, which
tend to work well for continuous structured roads [4], [9],
[20], [22]. The state vector tracks the positions of the lane

markings, heading, curvature, and the vehicle’s lateral position
[4]. Particle filtering [26] has gained popularity in lane tracking
as it natively integrates multiple hypotheses for lane markings
[24], [27]. In [25], a hybrid Kalman–Particle filter has been
implemented for lane tracking, which combines the stability of
the Kalman filter with the ability to handle multiple cues of the
particle filter.

B. Vehicle Detection and Tracking

Vehicle detection and tracking has been widely explored in
the literature in recent years [15], [28]–[30]. In [13], a variety of
features were used for vehicle detection, including rectangular
features and Gabor filter responses. The performance implica-
tions of classification with support vector machines and nearest
neighbor classifiers was also explored. In [31], deformable part-
based modeling was used for vehicle localization.

The set of Haar-like features, which is classified with
Adaboost, has been widely used in the computer vision liter-
ature, originally introduced for detection of faces [32]. Various
subsequent studies have applied this classification framework to
vehicle detection [33], [34], using Adaboost [35]. Rectangular
features and Adaboost were also used in [14], integrated in an
active learning framework for improved on-road performance.

In [36], vehicle detection was performed with a combina-
tion of triangular and rectangular features. In [34], a similar
combination of rectangular and triangular features was used for
vehicle detection and tracking, using Adaboost classification. In
[37], a statistical model based on vertical and horizontal edge
features was integrated with particle-filter vehicle tracking.
Particle-filter tracking was also used in [28] and [31]. Nighttime
detection of vehicles has been explored in [15].

C. Integrating Lane and Vehicle Tracking

While dense traffic has been reported as challenging for
various lane tracking [4] and vehicle tracking systems [14], few
studies have explored integration of lane and vehicle tracking.
In [38], lanes and vehicles were both tracked using a proba-
bilistic data association filter. The study showed that coupling
the two could improve vehicle detection rates for vehicles in
the ego-lane. However, [38] does not quantify lane tracking
performance, and does not infer other vehicles’ lane positions.
In [28], vehicle tracking and lane tracking were combined for
improved lane localization. However, [28] did not use lane
or road information to improve vehicle detection, or localize
vehicles with respect to lanes.

While [38] and [28] have explored some level of integration
of vehicle and lane tracking, neither has demonstrated a full
integration to benefit both vehicle tracking and lane tracking,
and neither study has utilized lane tracking and vehicle tracking
to infer any higher level information about the traffic scene,
such as local lane occupancy. This paper offers several contribu-
tions that have not been reported in prior works, and provides
an extensive quantitative validation and analysis. Further, this
paper specifically tests the system in dense traffic, which is
known to be a difficult scenario for vision-based driver assis-
tance systems.
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Fig. 3. Lane tracking framework used in this paper. Feature extraction is
achieved by applying a bank of steerable filters. The road model is fit using
RANSAC and lane position tracked with Kalman filtering.

III. LANE TRACKING AND VEHICLE TRACKING MODULES

Here, we first briefly review the lane tracking and vehicle
tracking modules utilized in this paper. The modules used in
this paper are based on prior works that have been reported
in the literature [4], [14] (see Fig. 3). Building upon tracking
systems already reported in the literature serves two main
purposes. First, it allows us to demonstrate the generality of
our approach, using established techniques. Second, it provides
a benchmark against which to compare the performance of the
integrated systems approach.

A. Lane Tracking Using Steerable Filters

For lane marking localization, we work with the inverse-
perspective-mapped (IPM) image of the ground plane, which
has been widely used in the literature [9], [24]. The camera’s
intrinsic parameters are determined using standard camera cal-
ibration. Using the camera parameters, a ground-plane image
can be generated given the knowledge of the real-world coordi-
nate origin and the region on the road the we want to project the
image onto [9]. Real-world points lying on the ground plane are
mapped into the camera’s frame of reference using a rotation
and a translation, as shown in the following:

[X Y Z ]T = [R T ]

⎡
⎢⎣
Xworld

0
Zworld

1

⎤
⎥⎦ (1)

ximage =

⎡
⎣ iimage

jimage

1

⎤
⎦ =

1
Z

⎡
⎣X
Y
Z

⎤
⎦ (2)

xground =Hximage. (3)

Given a calibrated camera, 3-D points in the camera’s frame
of reference are mapped to pixels using a pinhole model,
as in (2). Using real-world points of known location on the
ground plane, a homograph is computed using direct linear
transformation [39] to map the image plane projections of real-
world ground-plane points to a ground-plane image, shown in
(3). Pixel locations of points in the flat-plane image and the
actual locations on the road are related by a scale factor and

TABLE I
VARIABLES USED FOR LANE TRACKING

Fig. 4. Variables used in lane tracking, further explained in Table I.

offset. H is a 3 × 3 matrix of full rank, mapping homogeneous
points from the image plane to the ground plane [39]

We apply a bank of steerable filters to the IPM image.
Steerable filters have been used in prior lane tracking studies
[4], [9], [22], and have been shown to detect various types of
lane markings in a robust manner. Steerable filters are separable
and capable of localizing lane markings at various orientations.
They are constructed by orienting the second derivative of
Gaussian filters.

It can be shown that the response of any rotation of the
second derivative of Gaussian filter by an angle θ can be
computed using

G2θ =Gxx cos2 θ +Gyy sin
2 θ − 2Gxy cos θ sin θ

G2θmin /max =Gyy −
2G2

xy

Gxx −Gyy ±B

B =
√
G2

xx − 2GxxGyy +G2
yy + 4G2

xy (4)

where Gxx, Gyy , and Gxy correspond to the second derivatives
in the x, y, and x−y directions, respectively.

We solve for the maximum and minimum response angles
θmax and θmin, respectively. Using the filter responses, we then
aggregate the observed measurements and fit them to the road
model using 100 iterations of RANSAC [40], removing outliers
from the measurement. RANSAC has been used in various lane
tracking studies for model fitting [23], [24]. In this paper, we
use a parabolic model for the road, given as follows:

Xl(Z) =φ− 1
2
W + blZ + CZ2

Xr(Z) =φ+
1
2
W + brZ + CZ2. (5)

Table I shows the variables used in lane tracking, and Fig. 4
shows the coordinate system.
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Fig. 5. Active learning for vehicle detection and tracking, module originally
presented in [14].

We track the ego-vehicle’s position within its lane, the lane
width, and lane model parameters using Kalman filtering. The
system’s linear dynamic model is given as follows:

lk|k−1 =Alk−1 + wk−1

yk =Mlk + vk
l = [φ φ̇ bl br C W ]T

A =

⎡
⎢⎢⎢⎢⎢⎣

1 vΔt 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦

M =

⎡
⎢⎢⎢⎣

1 0 0 0 0 −1
2

1 0 0 0 0 1
2

0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

⎤
⎥⎥⎥⎦ . (6)

Observations come from passing the steerable filters over the
ground-plane image, and fitting the lane model in (5) using
RANSAC.

B. Active Learning for Vehicle Detection With
Particle-Filter Tracking

We have based the on-road vehicle detection and tracking
module in this paper on the module introduced in [14] (see
Fig. 5). It consists of an active-learning-based vehicle detector,
integrated with particle filtering for vehicle tracking [14], [26].
A comparative study of the performance of active learning
approaches for vehicle detection can be found in [41].

For the task of identifying vehicles, a boosted cascade of
simple Haar-like rectangular features has been used, as was
introduced by Viola and Jones [32] in the context of face detec-
tion. Various studies have incorporated this approach in on-road
vehicle detection systems, such as [33] and [34]. Rectangular
features are sensitive to edges, bars, vertical and horizontal
details, and symmetric structures [32]. The resulting extracted
values are effective weak learners [32], which are then classified

Fig. 6. Comparison of initial classifier with active-learning-based vehicle
detection, in scenes with complex shadowing.

by Adaboost [35]. In [14], active learning was utilized for train-
ing an on-road vehicle detector. An initial classifier was trained
using conventional supervised learning, then evaluated on in-
dependent real-world data sets. Misclassifications, e.g., false
positives and missed vehicles, were queried, along with correct
detection, and archived for a retraining stage [42]. The active-
learning-based classifier showed significant improvements in
recall and precision. Fig. 6 shows a side-by-side comparison
of vehicle detector outputs with complex shadowing. On the
left, the output of the initial detector is shown, and on the
right, the output of the active-learning-based detector is shown.
Vehicles that persist as detection over three frames are then
tracked. Particle-filter tracking has been implemented using the
condensation algorithm [26].

IV. SYNERGISTIC INTEGRATION OF LANE-VEHICLE

LOCALIZATION AND TRACKING

There are two intertwined motivations for integration of lane
and vehicle tracking. The first motivation deals with improving
the tracking performance of each module via system integra-
tion. The second motivation deals with utilizing higher level
information for traffic scene understanding. In the real-world
context, dense traffic presents a challenging scenario for vision-
based driver assistance as it presents extensive visual clut-
ter, occlusions, complex texture and shadowing, and dynamic
factors. These characteristics lead to false positives and poor
localization. Integrating lane and vehicle tracking can provide
robustness in dense traffic scenarios, improving tracking per-
formance for vehicles and lanes. Combining complimentary
information from the trackers augments valuable contextual
information. The integration of the two systems can be framed
in terms of a feedback loop in a partially observed system,
where lane and vehicle estimates are information states [43].
Lane observations augment estimation of the vehicles, whereas
vehicle observations augment lane estimation.

While prior works in vehicle tracking provide only relative
position about vehicles, in this paper, we infer other vehicles’
lane position. Lane-level localization of other vehicles provides
informational representations that are not possible with relative
position alone. Unlike vehicle tracking in prior works, in this
paper, the lane positions and lane changes of other vehicles can
be identified, providing safety critical information for short-
term and long-term collision predictions. In particular, the
system maintains awareness of other vehicles’ lane position,
identifying when a vehicle merges or deviates from a neigh-
boring lane into the ego-vehicle’s lane. By providing a dis-
crete state-based representation of vehicle location on the road,
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advanced techniques in trajectory learning and classification
can be applied [44], [45]. Additionally, traffic density can be
locally assessed with respect to the lanes, based on the lane
occupancy. This can serve as a basis for traffic-dependent path
planning, or for studying driver behavior and perceptions of
traffic.

Before we further detail the individual components of the
proposed approach, we make the following observations. The
system described has no thresholds or parameters to tune.
The system described does not need to iterate multiple times
over the same input frame. Each frame is processed once, and
temporal tracking and coherence result in consistent system
tracking outputs. We divide the contributions of the proposed
approach into three main categories: improved lane tracking
performance, improved vehicle tracking performance, and ve-
hicle localization and tracking with respect to lanes.

A. Improved Lane Tracking Performance

It is known that in dense traffic, vision-based lane tracking
systems may have difficulty localizing lane positions, due to
the presence of vehicles. This phenomenon has been reported
in [4], [28], and [38]. The reasons for this are twofold. First,
vehicles on the road can occlude lane markings. Second, high-
lights and reflections from vehicles themselves may elicit false-
positive lane marking responses, resulting in erroneous lane
localization.

To improve the lane estimation and tracking performance,
we integrate knowledge of vehicle locations in the image plane.
We first pass a bank of steerable filters over the IPM image, as
detailed in Section III-A, using (3) and (4). At this point, we
have a list of pixel locations in the ground plane, corresponding
to filter responses from (4). Using the inverse of the homogra-
phy matrix H−1, we can map potential lane markings from the
ground plane into the image plane, as shown in the following:

ximage =H−1xground (7)
Overlap = r1 ∩ r2. (8)

While (7) maps the centroid of the lane marking into the
image plane, for convenience, we represent each potential lane
marking as a small n× n rectangle in the image plane, centered
at the mapped centroid. Vehicle tracking also provides a list
of rectangles, corresponding to the tracked vehicle locations
in the image plane. Using the Pascal criterion in (8) for the
overlap of rectangles r1 and r2, we can filter out those mapped
lane markings that have overlap with the locations of tracked
vehicles in the image plane. This effectively eliminates lane
markings that correspond to vehicles in the traffic scene.

In practice, this approach produces the result that highlights
from the vehicle, including reflections, taillights, and other
features resembling lane markings that are excluded from the
model-fitting state of the lane estimation, as shown in Fig. 3.
We handle occlusions caused by vehicles in the traffic scene and
false-positive lane markings caused by vehicles, which is partic-
ularly pertinent to dense traffic scenes. Using the knowledge of
vehicle locations in the image plane, we distill the lane marking
responses to only those that do not correspond to vehicles. We
fit the road model to the pruned lane markings using RANSAC,
and apply the Kalman filter for lane tracking.

B. Improved Vehicle Detection

When applying a vehicle detection system to a given image,
false positives may be elicited by various structures in the
image. Among these are symmetric structures such as bridges,
road signs, and other man-made objects that, in general, do not
lie beneath the horizon. While various research studies have
explored the implications of different feature sets, classifiers,
and learning approaches [13], [14], false positives elicited
by objects that do not lie on the road can be eliminated by
enforcing a geometric constraint.

The geometric constraint is borne of the contextual under-
standing of the scene. In traffic scenes, vehicles lie below the
horizon. Using the horizon location in the image plane, we can
filter out those potential vehicle detection that do not lie on the
ground plane. This in turn improves the system’s precision.

We estimate the location of the horizon in the image plane
using the lane tracking results. Using (5), we have parabolic
curves for the left and right lane boundaries. We find the
vanishing point determined by the parabolic curves, by finding
the intersection of their tangent lines projected into the image
plane. The vertical y-coordinate of the vanishing point is taken
to be the location of the horizon in the image plane. Fig. 10(b)
shows this step.

To determine if an object lies beneath the horizon, we first
use the tracked object’s state vector, as given in (9). We then
use (10) to calculate the center of the bottom edge of the
object pbottom, which is represented in the image plane by its
bounding box. If the bottom edge of the object sits lower than
the estimated location of the ground plane, we keep this object
as a vehicle. Objects whose lower edge sits above the estimated
ground plane are filtered out.

C. Localizing and Tracking Vehicles and Lanes

Locating and tracking vehicles with respect to the ego-
vehicle’s lane provides a level of context unseen in prior
works dealing with on-road lane tracking and vehicle tracking.
Locating other vehicles on the road with respect to the ego-
vehicle’s lane introduces a variety of new research directions
for on-road vision systems. While prior studies are able to
localize other vehicles using relative distance [46], the ability
to localize vehicles’ lane positions is attractive for a number of
reasons. Tracked vehicles’ lane departures and lane changes can
be identified and monitored for the ego-vehicle’s own safety.
This information can be used for both short-term and long-term
trajectory predictions [45].

To track vehicles with respect to the ego-vehicle’s lane, we
have extended the state vector to accommodate measurements
relative to lane placement. A given vehicle’s state vector vt

consists of the parameters given in the following:

vt = [it jt wt ht Δit Δjt ξt]
T

ξt ∈{−1, 0, 1}. (9)

Parameters [it, jt, wt, ht] parametrize the bounding box of
a tracked vehicle in the image plane. Parameters [Δit, Δjt]
represent the change in it and jt from frame to frame. Parameter
ξ represents the lane position of a tracked vehicle.
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The lane parameter takes the discrete values given in (9). The
lane value of−1 corresponds to the left of the ego-lane. The lane
value of 0 corresponds to vehicle located in the ego-lane. The
lane value of 1 corresponds to locations right of the ego-lane

In a given frame, the observation zt consists of a vector
[ît ĵt ŵt ĥt]

T , corresponding to a parametrization of the
bounding box of a detected vehicle. The particles are then
confidence weighted and propagated for the next time instant.

A vehicle’s lane location in a given frame is inferred in three
steps. First, we compute the center of the vehicle’s bottom edge,
which lies on the ground plane, using

pbottom =

[
it +

1
2
wt, jt + ht, 1

]T
(10)

and represent it using homogeneous coordinates. We then use
(3) to project the vehicle’s ground-plane location into the
ground-plane image.

Finally, the vehicle’s lane location is inferred by comparing
the i coordinate of the mapped point on the ground plane to the
tracked lateral positions of the left and right lanes, using (5).

In practice, the assumptions made here utilizing the ground
plane and bottom edges of tracked vehicles work quite well.
Relying on the geometric structure of the traffic scene and
integrating tracking information from two modalities, we are
able to infer a richness of information that is unavailable by
simply tracking lanes and tracking vehicles separately.

V. EXPERIMENTAL VALIDATION AND EVALUATION

We quantify the contribution of the proposed framework
with three classes of experimental validation. For valida-
tion, we use the LISA-Q_2010 data set, which will be
made publicly available for academics and researchers at
http://cvrr.ucsd.edu/LISA/data sets. Captured on a San Diego,
CA, highway in June, the data set features typical rush-hour
traffic of moderate density at the beginning, progressing to
extremely dense traffic at the end. The sequence contains typ-
ical dynamic traffic scenarios, with its difficulty compounded
by extensive glare from the sun. The data set features 5000
consecutive frames, captured at 30 frames/s, over a distance of
roughly 5 km. Selected CANbus parameters over the sequence
are plotted in Fig. 7, which features decreased vehicle speed and
increased braking frequency as the traffic becomes more dense.

On this data set, we have conducted three sets of experimen-
tal validation. In the first set, we quantify the improvement in
lane tracking performance in dense traffic by using integrated
lane and vehicle tracking. In the second set, we quantify the
improvement in vehicle tracking performance. In the third set,
we quantify the performance of vehicle tracking with respect
to the ego-lane, over 1000 particularly dynamic frames. During
this segment, there are 2970 vehicles to detect.

A. Lane Tracking Performance

For experimental validation, we use commonly used perfor-
mance metrics of absolute error and standard deviation of error.
As the sequence progresses, the traffic becomes denser. Ground
truth was hand-labeled on a separate ground-truth lane video.
The lane tracker estimates the lane 40 m ahead.

Fig. 7. Selected parameters from the CANbus over the 5000-frame sequence.
Note how the vehicle’s speed decreases and driver’s braking increases as the
segment progresses, coinciding with increasing traffic density.

Fig. 8. Estimated position of the right lane marker versus frame number. The
ground truth is shown in green. The estimated position by using only a lane
tracker is shown in red. The result of the integrated lane and vehicle tracking
system is shown in blue. Note that for the last 1000 frames, the lane tracker
alone loses track of the lane position, due to high density traffic and a tunnel.

Fig. 8 plots the localization estimates of the lane tracker, the
integrated lane and vehicle tracking system, and the ground
truth on the same axis over the entire 5000 frame sequence.
While, for most of the sequence, the two lane tracking systems
match each other and the ground truth, after frame 4000, we
see a clear difference between the two systems. It is here that
we observe the large change in lane localization error due to
changes in traffic density.

During the sequence, we observe many dynamic maneuvers
and conditions typical of the on-road environment. These in-
clude lane changes of the ego-vehicle, lane changes of other
vehicles, and severe changes in road pitch due to bumps and
uneven patches on the road. Fig. 9(a) and (b) shows a sequence
that typifies the dynamic nature of the on-road environment,
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Fig. 9. Lane change maneuvers. In low-density traffic, both stand-alone lane tracking and integrated lane and vehicle tracking perform equally well. (a) Lane
tracking outputs, including two lane changes. (b) Steering angle during this segment. (a) Lane change maneuvers. (b) Steering angle.

Fig. 10. (a) We note a spike in the ground truth, and corresponding error around frame 2550. Large estimation error due to rapid severe variation in road pitch and
due to a large bump in the road, which severely alters the pitch for a very short period, is less than a second. The ego-vehicle was traveling at 35 m/s. (b) Selected
frames from this 1-s span. The beginning and end frames show normal lane estimation. The middle frames show lane estimation errors due to the bump in the road.
(c) Horizon estimation using lane estimation. The red line is the estimated horizon. (a) Lane estimation errors. (b) Horizon estimation. (c) Lane estimation error.

including two lane changes. In sparse traffic, both lane tracking
systems perform quite well. During this sequence, there is a
spike in the lane estimation error, around frame 2550. This is
due to a large bump in the road, which causes a rapid change
in road pitch. Fig. 10(c) shows frames from the 1-s span during
which this occurs.

We observe a consistent difference in robustness to dense
traffic between the lane localization performance of the two sys-
tems, due to the integration of vehicle tracking. An example can
be seen around frame 4050. We observe a spike in localization
error of the integrated lane and vehicle tracking system around
frame 4050. This is due to missed detection of the vehicle in
the adjacent lane over a few frames. Erroneous lane markings
that correspond to the vehicle have been integrated into the lane
measurement, which results in impaired lane localization, as
shown in Fig. 11(a).

Fig. 11. (a) Poor lane localization due to a missed vehicle detection. The
missed vehicle detection leads the lane tracker to integrate erroneous lane
markings into the measurements, resulting in worse lane estimation for the right
marker. (b) Example misclassification of lane position. The jeep in the right lane
(green) has been classified as in the ego-lane. This is due to the fact that the jeep
is farther ahead than the lane tracker’s look-ahead distance.

Fig. 12(a) plots the absolute localization error as a function
of time, after frame 4000. It is of note that as the traffic
becomes denser, the stand-alone lane tracker has difficulty. The
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Fig. 12. (a) Right lane marker estimation error. (b) Lane tracking in dense traffic, frame 4271, The pink lines indicate estimated lane positions. Note the large
estimation error due to the presence of vehicles in dense traffic. (c) Integrated lane and vehicle tracking in dense traffic in frame 4271. The red and blue lines
indicate estimated lane positions. Note the tracked vehicles and accurate lane estimation. (a) Absolute estimation error. (b) Lane tracker alone. (c) Integrated lane
and vehicle tracking.

TABLE II
LANE LOCALIZATION RESULTS

TABLE III
LANE LOCALIZATION RESULTS FOR THE LAST 1000 FRAMES

reason for the large localization error between frames 4000
and 5000 is that there is a lane change before frame 4000
that the stand-alone lane tracker missed. After the missed lane
change, the lane tracker’s estimation does not converge back
to the true value for the rest of the sequence, due to the high
density of vehicles on the road. Vehicles occlude lane bound-
aries and elicit false-positive lane markings, which corrupt the
system’s measurements. In the absence of dense traffic, after a
missed lane departure, the lane tracker’s readings would quickly
converge to ground. The integrated lane and vehicle tracking
system, by contrast, does not miss this lane change, and is able
to localize and track lane positions despite the dense traffic.
Fig. 12(b) and (c) shows example lane tracking results in dense
traffic.

Table II shows the mean absolute error and standard devia-
tion of error over the entire 5000-frame data set, for the lane
tracker alone, and for the integrated lane and vehicle tracking
system. Utilizing integrated lane and vehicle tracking signifi-
cantly improves the localization error of lane tracking in dense
traffic, resulting in better performance over the entire sequence.
It is of note that the main differences in system performance
are observed toward the end, in dense traffic. Table III shows
the mean absolute error and standard deviation of error, over
the last 1000 frames.

The experimental values for the integrating vehicle tracking
in Table II show a significant increase in robustness to the

dynamic on-road conditions presented by dense traffic. The
lane tracking results for integrated lane and vehicle tracking
are similar to those obtained in [4], and other lane tracking
works in the field. Integrated lane and vehicle tracking adds a
quantifiable level of robustness to lane estimation performance
in dense traffic scenarios.

B. Vehicle Tracking Performance

We evaluate the performance of the vehicle tracker, utilizing
lane information, on 1000 frames of the full sequence. This
sequence of 1000 frames was chosen because of its level of
traffic density. The beginning of the sequence has medium-
density traffic and progresses to heavily dense traffic toward
the end. During this sequence, there are 2790 vehicles on
the road to detect and track. The sequence begins with frame
2900, which typifies dynamic traffic scenarios, featuring rapid
changes in traffic density. The same sequence is used in
Section V-C for localizing tracked vehicles with respect to
lanes. Fig. 13(b) plots the estimated lane position during this
1000-frame sequence. Note that the lane changes toward the
end of the sequence, in dense traffic.

Fig. 13(a) plots the recall versus false positives per frame
over the sequence for the vehicle tracking system introduced
in [14] and for the integrated lane and vehicle tracking system
introduced in this paper. It is shown in [14] that the system
exhibits robust performance in dynamic traffic scenes. Over this
sequence, this system performs quite well, and its evaluation is
plotted in red.

Tables IV and V compare the recall and false positives
per frame at specific operating points. We can see that, at
very low false positives per frame, integrated lane and vehicle
tracking attains roughly 9% improved recall. At 90.5% recall,
we observe that integrated lane and vehicle tracking produces
0.16 fewer false positives per frame.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SIVARAMAN AND TRIVEDI: INTEGRATED LANE AND VEHICLE DETECTION, LOCALIZATION, AND TRACKING 9

Fig. 13. (a) Recall versus false positives per frame, comparing vehicle detection and tracking alone [14], and integrated lane and vehicle tracking. Performance is
evaluated over a 1000-frame sequence, which features 2790 vehicles. While both systems perform quite well over the data set, Integrated lane and vehicle tracking
has better performance in terms of false positives per frame. (b) Estimated lane position during vehicle localization validation sequence, and integrated lane and
vehicle tracking. Note the two lane changes toward the end of the sequence.

TABLE IV
PERFORMANCE COMPARISON OF LOW FALSE POSITIVES PER FRAME

TABLE V
PERFORMANCE COMPARISON OF HIGH RECALL

The vehicle tracking performance of the integrated lane and
vehicle tracking system is plotted in blue in Fig. 13(a). Includ-
ing the knowledge of where the ground plane lies effectively
filters out potential false positives, as evidenced by the recall
false positives per frame curve. It can be seen that, while both
systems perform quite well over the data set, integrated lane and
vehicle tracking offers improvement in false-positive rates.

Fig. 14(a) and (b) shows an example frame where false
positives have been filtered out by enforcing the ground plane.
In Fig. 14(a), there are two false positives elicited by buildings
off in the distance that lie on a hill. Fig. 14(b) shows the result
of enforcing the ground-plane constraint on tracked objects.

C. Localizing Vehicles With Respect to Lanes

Over the 1000 frames detailed earlier, we evaluate the per-
formance of the system localizing tracked vehicles with respect
to the ego-vehicle’s lane position. For this evaluation, there are

Fig. 14. (a) Buildings off the road result in false positives. (b) By enforcing the
constraint that tracked vehicles must lie on the ground plane, the false positives
are filtered out. (a) Vehicle tracking. (b) Integrated lane and vehicle tracking,
enforcing ground-plane constraint.

Fig. 15. Ambiguities in lane/vehicle positions. The vehicle on the left is in
the midst of a lane change. (a) Vehicle is determined to still be in the ego-lane.
(b) Vehicle is determined to have changed lanes in to the left lane.
(a) Frame 519. (b) Frame 520.

three classes of vehicles, corresponding to their lateral position
on the road. Vehicles are classified as left if their inferred
position is left of the ego-vehicle’s lane. Correspondingly, the
lane parameter of their state vector, given in (9), takes the
value −1. Vehicles determined to be in the ego-vehicle’s lane
are classified as Ego-lane and have the lane parameter of the
state vector set to 0. Vehicles to the right of the ego-lane are
classified as Right, and have lane parameter 1. Fig. 15(a) and
(b) shows the lane change of a tracked vehicle. Fig. 16(a)–(c)
show an ego-lane change and its implications for localizing
other vehicles with respect to the ego-lane.
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Fig. 16. Illustrating lane-level localization of vehicles during an ego-lane change. (a) Frame 2287, immediately prior to lane change. (b) Lane Change.
We note that the truck on the left has been incorrectly assigned to the ego-lane. (c) Truck on the left has been correctly assigned to the left lane, a few frames later.
(a) Prior to lane change. (b) Lane change. (c) Lane change.

TABLE VI
CONFUSION MATRIX OF TRACKED VEHICLE LANE ASSIGNMENTS

Table VI shows a confusion matrix of vehicle tracking results
with respect to the lanes. We note that, in general, the lane-
based tracking is quite accurate. Overall, we report 93.2%
localization accuracy over the 1000 frame sequence. During
this sequence, there are a total of 2790 vehicles to be tracked
with respect to lanes.

We note some asymmetry in the classification results. While
it is to be expected that there will be confusion between ego-
lane vehicles and those in adjacent lanes, it appears in Table VI
that the left lane classification performs quite a bit better than
the right lane classification, which perform relatively similarly
to each other. The last column of Table VI shows the distribu-
tion of vehicles per lane in the ground-truth set, which shows
that, in the data set, many vehicles are encountered in the right
lane than in the left lane. This explains the asymmetry in results.

In general, the range of the vehicle tracking system is greater
than that of the lane tracker. This means that vehicles can be
tracked farther away from the ego-vehicle than lane markings
and positions. Consequently, for vehicles that are very far away,
we are inferring their lane position based on the tracked lane
positions much closer to the ego-vehicle. Fig. 11(b) shows an
example of this phenomenon. While the lane positions have
been accurately tracked and the vehicles accurately tracked,
there is a tracked vehicle quite far away, whose lane position
is incorrectly inferred.

Other sources of error stem from ambiguities regarding a
given vehicle’s lane position. When a vehicle is changing lanes,
it is difficult to definitively determine which lane the vehicle is
in. Fig. 15(a) and (b) depict this phenomenon. The vehicle on
the left is changing lanes from the ego-lane to the left lane. In
addition, the system can have difficulty assigning lanes during
the ego-vehicle’s lane change maneuvers. Fig. 16(b) and (c)
depict this phenomenon.

TABLE VII
PROCESSING TIME FOR VEHICLE, LANE, AND INTEGRATED SYSTEMS

D. Processing Time

We assess the additional computational load required to run
the integrated lane and vehicle tracking, and compare it to the
processing times required for the stand-alone lane tracker, and
stand-alone vehicle tracker. While efforts have been made to
pursue efficient implementation, neither code nor hardware is
optimized. Table VII provides the processing time per 704 ×
408 video frame in milliseconds, for each of the respective
systems. The system is executed on a Pentium i7 2.4-GHz
architecture.

The vehicle detector and tracking system requires 33.1 ms to
process a single frame, running at real-time speeds of a little
over 30 frames per second. The lane tracking system takes
74.1 ms to process a frame, running at 13.5 frames per second.
Integrated lane and vehicle tracking takes 90.1 ms to process a
single frame, running at roughly 11 frames per second, some-
what less than the sum of the times required for the vehicle and
lane tracking systems separately. This speed is near real time.

VI. CONCLUDING REMARKS

The synergistic approach that has been introduced in this
paper achieves three main goals. First, we have improved the
performance of the lane tracking system, and extended its
robustness to high-density traffic scenarios. Second, we have
improved the precision of the vehicle tracking system, by
enforcing geometric constraints on detected objects, derived
from the estimated ground plane. Third, we have introduced
a novel approach to localizing and tracking other vehicles
on the road with respect to the estimated lanes. The lane-
level localization adds contextual relevance to vehicle and lane
tracking information, which are valuable additions to human-
centered driver assistance. The fully implemented integrated
lane and vehicle tracking system currently runs at 11 frames
per second, using a frame resolution of 704 × 480. Future work
will involve extensions to urban driving [17] and expansion
of the contextual tracking, learning long-term trajectory, and
behavioral patterns [45].
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