Homework #1 Due Th. 2/21

You must turn in your code as well as output files. Please generate a report that contains the code and ouput in a single readable format.

- 1. Getting Started
 - (a) Download the "standard" test images from the Gonzalez and Woods website. http://www.imageprocessingplace.com/root_files_V3/image_databases.htm
 - (b) Download the sample images from the class website. http://www.ee.unlv.edu/~b1morris/ecg795/images/hw1
- 2. Histogram Equalization
 - (a) Write a function hist_eq.m that performs histogram equalization on an intensity image. The function should take as inputs an intensity image and the number of gray level value bins. Create a separte m-file for this function.
 - (b) Perform histogram equalization on the jetplane image using 256, 128, and 64 bins. Compare the original image and the histogram equalized images by plotting the corresponding histograms and images side-by-side in a 2×2 subplot matrix.
 - (c) Perform the equalization in 32×32 blocks. Display the output image. You will find blockproc.m useful.
- 3. Morphology
 - (a) Threshold the image SJEarthquakesteampic.jpg to detect faces. Be sure to describe how you obtained your threshold. You may find this is easier in another colorspace such as HSV.
 - (b) Use morphological operations to clean the image and count the number of players in the image.
 - (c) Create an output image that has a bounding box around each face. Use regionprops.m.
- 4. Filtering
 - (a) Consider image DSCN0479-001.JPG as a perfect image. Add white Gaussian noise with variance 0.005. Smooth with a 3×3 and 7×7 box filter and a median filter. Compute the mean squared error (MSE)

$$MSE = \frac{1}{MN} \sum_{m} \sum_{n} (I_1(m, n) - I_2(m, n))^2$$

and the peak signal-to-noise ratio (PSNR)

$$PSNR = 20 \times \log_1 0(255/\sqrt{MSE})$$

for the noise reduced images. Which filter has the best results based on the error measures? How do the results compare visually?

- (b) Repeat (a) with salt and pepper noise with noise density 0.05.
- (c) Do the filtering again but this time on a real noisy image DSCN0482-001.JPG obtained at higher ISO. Compare the results visually only this time. Which filter works best for "real" noise?