
Computer Vision and Intelligent Systems ECG795: Spring 13

Homework #2
Due Th. 3/14

You must turn in your code as well as output files. Please generate a report that contains the code
and ouput in a single readable format.

Getting Started

� You may want to download Irfanview image viewing software. It handles pretty much any
image type, lets you convert, and provides batch processing.

http://www.irfanview.com/

� Download the sample images from the class website.

http://www.ee.unlv.edu/~b1morris/ecg795/images/hw2

Problems

1. Correlation Detection

This problem requires the UIUC Car Detection Database found at

http://cogcomp.cs.illinois.edu/Data/Car/.

Notice the images are in .pgm format and cannot be natively displayed on Windows.

(a) Write a function corr detect.m that will take image template to compare with a test
image and a 0 ≤ τ ≤ threshold for object detection. The function should return a list
of the image locations that are above the match threshold τ.

(b) Test the performance of your detector on the images in the
TestImages directory and create an ROC curve using the trueLocations.txt file. You
should compare the performance using image pos-1.pgm and pos-125.pgm as the tem-
plates. Which template performs better? Be sure to evaluate both directions for the
templates to get orientation from left-right and right-left.

Use the overlap ratio to determine TP or FP as described for the Pascal VOC challenge

http://pascallin.ecs.soton.ac.uk/challenges/VOC/pubs/everingham10.pdf

See “Framework for Performance Evaluation of Face, Text, and Vehicle Detection and
Tracking in Video: Data, Metrics, and Protocol ” by Kasturi et. al in 2009 for more
information about methodolgies for measuring performance of detectors.

(c) You may notice that your detector returns a number of responses in the same area.
This is a common occurrence for object detection algorithms. Design a non-maximum
supression (NMS) routine to reduce these effects by only keeping the largest response in
a local area. Plot the ROC with NMS on the same ROC curve from (b).

(d) Design an image pyramid scheme and repeat your evaluation on the
TestImages Scale directory. Add the ROC curves to your plot.

2. Corner Detection

(a) Consider the symmetric 2 × 2 matrix

A =

[
a b
c d

]
.

1

http://www.irfanview.com/
http://www.irfanview.com/
http://www.ee.unlv.edu/~b1morris/ecg795/images/hw2
http://cogcomp.cs.illinois.edu/Data/Car/
http://cogcomp.cs.illinois.edu/Data/Car/
http://pascallin.ecs.soton.ac.uk/challenges/VOC/pubs/everingham10.pdf


Computer Vision and Intelligent Systems ECG795: Spring 13

By finding the roots of the characteristic equation,

det(λI −A) = 0,

show that the eigenvalues of A are given by

λ =
tr(A) ±

√
tr(A)2 − 4 det(A)

2
.

The angle of the principle eigenvector of A is given by

φ =
1

2
arctan

(
2b

a− c

)
.

(b) Compute the feature detection autocorrelation matrix A for the checkerboard image.
Use a simple 3 × 3 box filter for the window function. Show the image with an overlay
of the keypoint locations, defined as those points with λmin > τ with τ 80% of the
maximum λmin value over the whole image. Also, draw a vector indicating the keypoint
orientation (scaled by magnitude λmin).

(c) Repeat for the fingerprint image.

3. SIFT Feature Matching

Read David Lowe’s Sift papers found on his website

http://www.cs.ubc.ca/~lowe/keypoints/

(a) Use your corner detector from the previous problem to locate keypoints in the graffiti
images (convert to grayscale). Overlay they keypoint locations (no angle) on the image.

(b) Write a function sift descriptor.m that takes an image location and outputs the 128-d
SIFT feature vector.

(c) Compare the keypoints in the two images. Plot the images side-by-side and connect
matching keypoints by a line as done on Lowe’s webpage.

(d) (Extra) Estimate the affine transform between the two images. You should compare
your results using a robust estimator like RANSAC vs. the linear least squares.

4. Hough Transform

(a) Write code to implement the Hough transform for line detection. You may use hough.m

as a guide, however, you should implment the version from the Szeliski book and not
the traditional Hough transform.

(b) Compute the Hough transform of the city image. Display the Hough accumulator image
and the original image with the top 5 lines overlayed.

(c) Compare your results with Matlab’s implmentation.

2

http://www.cs.ubc.ca/~lowe/keypoints/

