EE795: Computer Vision and Intelligent Systems

Spring 2012
TTh 17:30-18:45 WRI C225

Lecture 03
130129

http://www.ee.unlv.edu/~b1morris/ecg795/
Outline

• Review
• Histogram Equalization
• Image Filtering
• Linear Filtering
• Morphology
• Connected Components
Computer Vision

- Interpretation and understanding of images

Input:
1. Image derived measurements
2. Models (prior knowledge)

Output:
- Recognition of objects and events embedded in images and video
 (“Semantic” level classification)

Examples:
- Object recognition
- Face recognition
- Lane detection
- Activity analysis
Image as Function

- Image is a function, \(f \), that maps from \(R^2 \) to \(R \)
 - \(0 < f(x, y) < 1 \) is the intensity at a point \((x, y)\)
 - In reality, an image is defined over a rectangle with a finite range of values
 - \(f: [a, b] \times [c, d] \rightarrow [0,1] \)
- Computationally, [0,1] range is convenient but usually we have an 8-bit quantized representation
 - \(0 < f(x, y) < 255 \)
- Color image is just three separate functions pasted together
 - \(f(x, y) = [r(x, y); g(x, y); b(x, y)] \)
Image as Function

- Multiple equivalent representations
- Image

- Surface

- Matrix

```
188 186 188 187 188 139 101 09 110 113 113 117 117 140 153 153 156 153 156 158 156 156 156 156 156 156 156
189 189 188 181 185 139 109 104 113 113 116 109 117 147 147 153 156 158 160 156 156 156 156 156 156 156 156
190 190 188 188 176 159 139 115 106 114 123 114 111 119 130 141 154 156 160 156 156 156 156 156 156 156 156
190 188 188 187 158 139 114 103 113 125 125 113 127 127 133 137 156 156 156 156 156 156 156 156 156 156 156
191 185 189 177 158 138 110 99 112 119 117 111 122 114 130 130 139 154 156 160 156 156 156 156 156 156 156 156
193 183 178 164 148 134 118 112 119 117 117 118 126 122 139 140 152 154 160 156 156 156 156 156 156 156 156
175 176 176 163 145 131 120 118 125 125 125 125 125 125 125 125 125 125 125 125 125 125 125 125 125 125 125
193 176 176 163 145 131 120 118 125 125 125 125 125 125 125 125 125 125 125 125 125 125 125 125 125 125 125
170 170 172 159 137 123 116 114 119 122 126 113 123 136 141 151 158 158 158 158 158 158 158 158 158 158 158
171 171 173 157 131 119 116 113 114 118 125 113 123 136 141 151 158 158 158 158 158 158 158 158 158 158 158
174 175 176 156 128 120 121 118 113 112 123 142 125 135 141 155 155 155 155 155 155 155 155 155 155 155 155
176 174 174 151 123 119 126 121 112 108 122 115 123 137 143 156 156 155 155 155 155 155 155 155 155 155 155
179 179 180 155 127 121 128 105 107 113 125 133 130 129 139 153 156 156 155 155 155 155 155 155 155 155 155
176 183 183 153 122 115 113 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105
181 174 170 141 113 111 115 112 113 105 119 130 132 134 144 153 156 156 156 156 156 156 156 156 156 156 156
185 178 171 138 109 110 114 110 110 97 110 121 127 136 150 160 163 158 156 156 156 156 156 156 156 156
```
Image Processing

• Usually the first stage of computer vision applications
 ▫ Input an image to a system \(\rightarrow \) get a processed image as output

\[
f(x, y) \rightarrow T \rightarrow g(x, y)
\]

▫ \(g(x, y) = T[f(x, y)] \)

• Digital Image Processing by Gonzalez and Woods is a great book to learn more
Pixel Transforms

• Gain and bias (Multiplication and addition of constant)
 ▫ \[g(x, y) = a(x, y)f(x, y) + b(x, y) \]
 ▫ \(a \) (gain) controls contrast
 ▫ \(b \) (bias) controls brightness
 • Notice parameters can vary spatially (think gradients)

• Linear blend
 ▫ \[g(x) = (1 - \alpha)f_0(x) + \alpha f_1(x) \]
 ▫ We will see this used later for motion detection in video processing
Compositing and Matting

- Techniques to remove an object and place it in a new scene
 - E.g. blue screen

- Matting – extracting an object from an original image
- Compositing – inserting object into another image (without visible artifacts)
- A fourth alpha channel is added to an RGB image
 - α describes the opacity (opposite of transparency) of a pixel
- Over operator
 - $C = (1 - \alpha)B + \alpha F$
Histogram Processing

- Digital image histogram is the count of pixels in an image having a particular value in range $[0, L - 1]$
 - $h(r_k) = n_k$
 - r_k - the kth gray level value
 - Set of r_k are known as the bins of the histogram
 - n_k - the numbers of pixels with kth gray level

- Empirical probability of gray level occurrence is obtained by normalizing the histogram
 - $p(r_k) = n_k/n$
 - n – total number of pixels
Histogram Example

- **x-axis** – intensity value
 - Bins $[0, 255]$
- **y-axis** – count of pixels

- **Dark image**
 - Concentration in lower values
- **Bright image**
 - Concentration in higher values
- **Low-contrast image**
 - Narrow band of values
- **High-contrast image**
 - Intensity values in wide band
Histogram Equalization

• Assume continuous functions (rather than discrete images)
• Define a transformation of the intensity values to “equalize” each pixel in the image
 ▫ $s = T(r)$, $0 \leq r \leq 1$
 ▫ Notice: intensity values are normalized between 0 and 1
• The inverse transformation is given as
 ▫ $r = T^{-1}(s)$, $0 \leq s \leq 1$
• Viewing the gray level of an image as a random variable
 ▫ $p_s(s) = p_r(r) \left| \frac{dr}{ds} \right|$
• Let s by the cumulative distribution function (CDF)
 ▫ $s = T(r) = \int_0^r p_r(w)dw$
• Then
 ▫ $\frac{ds}{dr} = p_r(r)$
• Which results in a uniform PDF for the output intensity
 ▫ $p_s(s) = 1$
• Hence, using the CDF of a histogram will “equalize” an image
 ▫ Make the resulting histogram flat across all intensity levels
Discrete Histogram Equalization

- The probability density is approximated by the normalized histogram
 \[p_r(r_k) = \frac{n_k}{n} \quad k = 0, \ldots, L - 1 \]

- The discrete CDF transformation is
 \[s_k = T(r_k) = \sum_{j=0}^{k} p_r(r_j) \]
 \[s_k = \sum_{j=0}^{k} \frac{n_k}{n} \]

- This transformation does not guarantee a uniform histogram in the discrete case
 - It has the tendency to spread the intensity values to span a larger range
Histogram Equalization Example

- Histograms have wider spread of intensity levels
- Notice the equalized images all have similar visual appearance
 - Even though histograms are different
 - Contrast enhancement
Local Histogram Enhancement

- Global methods (like histogram equalization as presented) may not always make sense
 - What happens when properties of image regions are different?

- Compute histogram over smaller windows
 - Break image into “blocks”
 - Process each block separately

- Original image

- Block histogram equalization

- Notice the blocking effects that cause noticeable boundary effects
Local Enhancement

- Compute histogram over a block (neighborhood) for every pixel in a moving window

![Image of block histograms]

Figure 3.8 Locally adaptive histogram equalization: (a) original image; (b) block histogram equalization; (c) full locally adaptive equalization.

- Adaptive histogram equalization (AHE) is a computationally efficient method to combine block based computations through interpolation

Figure 3.26 (a) Original image. (b) Result of global histogram equalization. (c) Result of local histogram equalization applied to (a), using a neighborhood of size 3×3.
Image Processing Motivation

• Image processing is useful for the reduction of noise

• Common types of noise
 ▫ Salt and pepper – random occurrences of black and white pixels
 ▫ Impulse – random occurrences of white pixels
 ▫ Gaussian – variations in intensity drawn from normal distribution

Adapted from S. Seitz
Ideal Noise Reduction

• How can we reduce noise given a single camera and a still scene?
 ▫ Take lots of images and average them

• What about if you only have a single image?
Image Filtering

- Filtering is a neighborhood operation
 - Use the pixels values in the vicinity of a given pixel to determine its final output value

- Motivation: noise reduction
 - Replace a pixel by the average value in a neighborhood
 - Assumptions:
 - Expect pixels to be similar to their neighbors (local consistency)
 - Expect noise processes to be independent from pixel to pixel (i.i.d.)
Linear Filtering

- Most common type of neighborhood operator
- Output pixel is determined as a weighted sum of input pixel values
 \[g(x, y) = \sum_{k,l} f(x + k, y + l)w(k, l) \]
 \[g = f \bigotimes w \]
 - \(w \) – is known as the kernel, mask, filter, template, or window
 - \(w(k, l) \) – entry is known as a kernel weight or filter coefficient
- This is also known as the correlation operator
Filtering Operation

- $g(x, y) = \sum_{k,l} f(x + k, y + l)w(k, l)$

- The filter mask is moved from point to point in an image
 - The response is computed based on the sum of products of the mask coefficients and image

- Notice the mask is centered at $w(0,0)$
 - Usually we use odd sized masks so that the computation is symmetrically defined

- Matlab commands
 - `imfilter.m`, `filter2.m`, `conv2.m`
Connection to Signal Processing

- General system notation

\[y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k] \]

- LTI system
 - Convolution relationship

- Discrete 1D LTI system

- Discrete 2D LTI system

\[g(x, y) = \sum_{s=-\infty}^{\infty} \sum_{t=-\infty}^{\infty} f(x, y)w(x-s, y-t) \]

 - Linear filtering is the same as convolution without flipping
Border Effects

• The filtering process suffers from boundary effects
 ▫ What should happen at the edge of an image?
 ▫ No values exist outside of image

• Padding extends image values outside of the image to “fill” the kernel at the borders
 ▫ Zero – set pixels to 0 value
 • Will cause a darkening of the edges of the image
 ▫ Constant – set border pixels to fixed value
 ▫ Clamp – repeat edge pixel value
 ▫ Mirror – reflect pixels across image edge
Computational Requirements

- Convolution requires K^2 operations per pixel for a $K \times K$ size filter.
- Total operations on an image is $M \times N \times K^2$.

- This can be computationally expensive for large K.
- Cost can be greatly improved if the kernel is separable:
 - First do 1D horizontal convolution.
 - Follow with 2D vertical convolution.

- Separable kernel:
 - $w = vh^T$
 - v – vertical kernel
 - h - horizontal kernel
 - Defined by outer product.

- Can approximate a separable kernel using singular value decomposition (SVD):
 - Truly separable kernels will only have one non-zero singular value.
Smoothing Filters

- Smoothing filters are used for blurring and noise reduction
 - Blurring is useful for small detail removal (object detection), bridging small gaps in lines, etc.
- These filters are known as lowpass filters
 - Higher frequencies are attenuated
 - What happens to edges?
Linear Smoothing Filter

- The simplest smoothing filter is the moving average or box filter
 - Computes the average over a constant neighborhood

- This is a separable filter
 - Horizontal 1D filter
 - Remember your square wave from DSP
 - \(h[n] = \begin{cases} 1 & 0 \leq n \leq M \\ 0 & \text{else} \end{cases} \)
 - Fourier transform is a sinc function

\[
\frac{1}{K^2} \begin{bmatrix} 1 & 1 & \cdots & 1 \\ 1 & 1 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 1 \end{bmatrix}
\]

\[
\frac{1}{K} \begin{bmatrix} 1 & 1 & \cdots & 1 \end{bmatrix}
\]
More Linear Smoothing Filters

• More interesting filters can be readily obtained

• Weighted average kernel (bilinear) - places more emphasis on closer pixels
 ▫ More local consistency

• Gaussian kernel - an approximation of a Gaussian function
 ▫ Has variance parameter to control the kernel “width”
 ▫ `fspecial.m`

\[h(u, v) = \frac{1}{2\pi\sigma^2} e^{-\frac{u^2 + v^2}{\sigma^2}} \]
Smoothing Examples

FIGURE 3.33 (a) Original image, of size 500×500 pixels. (b)–(f) Results of smoothing with square averaging filter masks of sizes $m = 3, 5, 9, 15, $ and 35, respectively. The black squares at the top are of sizes $3, 5, 9, 15, 25, 35, 45,$ and 55 pixels, respectively; their borders are 25 pixels apart. The letters at the bottom range in size from 10 to 24 points, in increments of 2 points; the large letter at the top is 60 points. The vertical bars are 5 pixels wide and 100 pixels high; their separation is 20 pixels. The diameter of the circles is 25 pixels, and their borders are 15 pixels apart; their intensity levels range from 0% to 100% black in increments of 20%. The background of the image is 10% black. The noisy rectangles are of size 50×120 pixels.

Object detection

FIGURE 3.34 (a) Image of size 528×485 pixels from the Hubble Space Telescope. (b) Image filtered with a 15×15 averaging mask. (c) Result of thresholding (b). (Original image courtesy of NASA.)
Median Filtering

• Sometimes linear filtering is not sufficient
 ▫ Non-linear neighborhood operations are required
• Median filter – replaces the center pixel in a mask by the median of its neighbors
 ▫ Non-linear operation, computationally more expensive
 ▫ Provides excellent noise-reduction with less blurring than smoothing filters of similar size (edge preserving)
 • For impulse and salt-and-pepper noise

FIGURE 3.35 (a) X-ray image of circuit board corrupted by salt-and-pepper noise. (b) Noise reduction with a 3 × 3 averaging mask. (c) Noise reduction with a 3 × 3 median filter. (Original image courtesy of Mr. Joseph E. Pascente, Lixi, Inc.)
Bilateral Filtering

• Combine the idea of a weighted filter kernel with a better version of outlier rejection
 ▫ \(\alpha \)-trimmed mean calculates average in neighborhood excluding the \(\alpha \) fraction that are smallest or largest

• \(w(i, j, k, l) = d(i, j, k, l) \times r(i, j, k, l) \)
 ▫ \(d(i, j, k, l) \) - domain kernel specifies “distance” similarity between pixels (usually Gaussianian)
 ▫ \(r(i, j, k, l) \) – range kernel specifies “appearance (intensity)” similarity between pixels
Bilateral Filtering Example

Figure 3.20 Bilateral filtering (Durand and Dorsey 2002) © 2002 ACM: (a) noisy step edge input; (b) domain filter (Gaussian); (c) range filter (similarity to center pixel value); (d) bilateral filter; (e) filtered step edge output; (f) 3D distance between pixels.
Sharpening Filters

- Sharpening filters are used to highlight fine detail or enhance blurred detail.

- Smoothing we saw was averaging
 - This is analogous to integration.

- Since sharpening is the dual operation to smoothing, it can be accomplished through differentiation.
Digital Derivatives

- Derivatives of digital functions are defined in terms of differences
 - Various computational approaches
- Discrete approximation of a derivative
 - \(\frac{\partial f}{\partial x} = f(x + 1) - f(x) \)
 - \(\frac{\partial f}{\partial x} = f(x + 1) - f(x - 1) \)
 - Center symmetric
- Second-order derivative
 - \(\frac{\partial^2 f}{\partial x^2} = f(x + 1) + f(x - 1) - 2f(x) \)
Difference Properties

- **1st derivative**
 - Zero in constant segments
 - Non-zero at intensity transition
 - Non-zero along ramps

- **2nd derivative**
 - Zero in constant areas
 - Non-zero at intensity transition
 - Zero along ramps

- **2nd order filter is more aggressive at enhancing sharp edges**
 - Outputs different at ramps
 - 1st order produces thick edges
 - 2nd order produces thin edges
 - Notice: the step gets both a negative and positive response in a double line
The Laplacian

- 2nd derivatives are generally better for image enhancement because of sensitivity to fine detail
- The Laplacian is simplest isotropic derivative operator
 - \(\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} \)
 - Isotropic – rotation invariant
- Discrete implementation using the 2nd derivative previously defined
 - \(\frac{\partial^2 f}{\partial x^2} = f(x + 1, y) + f(x - 1, y) - 2f(x, y) \)
 - \(\frac{\partial^2 f}{\partial y^2} = f(x, y + 1) + f(x, y - 1) - 2f(x, y) \)
 - \(\nabla^2 f = [f(x + 1, y) + f(x - 1, y) + f(x, y + 1) + f(x, y - 1)] - 4f(x, y) \)
Discrete Laplacian

- Zeros in corners give isotropic results for rotations of 90°
 - Non-zeros corners give isotropic results for rotations of 45°
 - Include diagonal derivatives in Laplacian definition
- Center pixel sign indicates light-to-dark or dark-to-light transitions
Sharpening Images

- Sharpened image created by addition of Laplacian

 \[g(x, y) = \begin{cases} f(x, y) - \nabla^2 f(x, y) & w(0,0) < 0 \\ f(x, y) + \nabla^2 f(x, y) & w(0,0) > 0 \end{cases} \]

- Notice: the use of diagonal entries creates much sharper output image

- How can we compute \(g(x, y) \) in one filter pass without the image addition?

 - Think of a linear system
Unsharp Masking

- Edges can be obtained by subtracting a blurred version of an image
 \[f_{us}(x, y) = f(x, y) - \bar{f}(x, y) \]
 - Blurred image
 \[\bar{f}(x, y) = h_{blur} \ast f(x, y) \]
- Sharpened image
 \[f_s(x, y) = f(x, y) + \gamma f_{us}(x, y) \]
The Gradient

1. **1st derivatives can be useful for enhancement of edges**
 - Useful preprocessing before edge extraction and interest point detection

2. **The gradient is a vector indicating edge direction**
 - \(\nabla f = \begin{bmatrix} G_x \\ G_y \end{bmatrix} = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix} \)

3. **The gradient magnitude can be approximated as**
 - \(\nabla f \approx |G_x| + |G_y| \)
 - This gives isotropic results for rotations of 90°

4. **Sobel operators**
 - Have directional sensitivity
 - Coefficients sum to zero
 - Zero response in constant intensity region
Morphological Image Processing

• Filtering done on binary images
 ▫ Images with two values \([0,1], [0, 255], \text{[black,white]}\)
 ▫ Typically, this image will be obtained by thresholding
 \[g(x, y) = \begin{cases} 1 & f(x, y) > T \\ 0 & f(x, y) \leq T \end{cases} \]

• Morphology is concerned with the structure and shape

• In morphology, a binary image is convolved with a structuring element \(s\) and results in a binary image

• See Chapter 9 of Gonzalez and Woods for a more complete treatment
Mathematical Morphology

- Tool for extracting image components that are useful in the representation and description of region shape
 - Boundaries, skeletons, convex hull, etc.
- The language of mathematical morphology is set theory
 - A set represents an object in an image
- This is often useful in video processing because of the simplicity of processing and emphasis on “objects”
 - Handy tool for “clean up” of a thresholded image
Morphological Operations

- **Threshold operation**
 - $\theta(f, t) = \begin{cases} 1 & f \geq t \\ 0 & \text{else} \end{cases}$

- **Structuring element**
 - s – e.g. 3 x 3 box filter (1’s indicate included pixels in the mask)
 - S – number of “on” pixels in s

- **Count of 1s in a structuring element**
 - $c = f \otimes s$
 - Correlation (filter) raster scan procedure

- **Basic morphological operations can be extended to grayscale images**

- **Dilation**
 - $\text{dilate}(f, s) = \theta(c, 1)$
 - Grows (thickens) 1 locations

- **Erosion**
 - $\text{erode}(f, s) = \theta(c, S)$
 - Shrink (thins) 1 locations

- **Opening**
 - $\text{open}(f, s) = \text{dilate}(\text{erode}(f, s), s)$
 - Generally smooth the contour of an object, breaks narrow isthmuses, and eliminates thin protrusions

- **Closing**
 - $\text{close}(f, s) = \text{erode}(\text{dilate}(f, s), s)$
 - Generally smooth the contour of an object, fuses narrow breaks/separations, eliminates small holes, and fills gaps in a contour
Morphology Example

• Dilation - grows (thickens) 1 locations
• Erosion - shrink (thins) 1 locations
• Opening - generally smooth the contour of an object, breaks narrow isthmuses, and eliminates thin protrusions
• Closing - generally smooth the contour of an object, fuses narrow breaks/separations, eliminates small holes, and fills gaps in a contour

Figure 3.21 Binary image morphology: (a) original image; (b) dilation; (c) erosion; (d) majority; (e) opening; (f) closing. The structuring element for all examples is a 5×5 square. The effects of majority are a subtle rounding of sharp corners. Opening fails to eliminate the dot, since it is not wide enough.
Connected Components

- Semi-global image operation to provide consistent labels to similar regions
 - Based on adjacency concept
- Most efficient algorithms compute in two passes

\[
X_k = (X_{k-1} \oplus B) \cap A
\]

Figure 3.23 Connected component computation: (a) original grayscale image; (b) horizontal runs (nodes) connected by vertical (graph) edges (dashed blue)—runs are pseudocolored with unique colors inherited from parent nodes; (c) re-coloring after merging adjacent segments.

- More computational formulations (iterative) exist from morphology
 - \[X_k = (X_{k-1} \oplus B) \cap A\]
More Connected Components

- Typically, only the “white” pixels will be considered objects
 - Dark pixels are background and do not get counted
- After labeling connected components, statistics from each region can be computed
 - Statistics describe the region – e.g. area, centroid, perimeter, etc.

- Matlab functions
 - `bwconncomp.m`, `labelmatrix.m` (`bwlabel.m`) - label image
 - `label2rgb.m` – color components for viewing
 - `regionprops.m` – calculate region statistics
Connected Component Example

- Grayscale image
- Threshold image
- Opened Image
- Labeled image – 91 grains of rice