
http://www.ee.unlv.edu/~b1morris/ecg795/ 

EE795: Computer Vision and 

Intelligent Systems 

Spring 2012 

TTh 17:30-18:45 WRI C225 

 

Lecture 04 

130131 



Outline 

• Review 

▫ Histogram Equalization 

• Image Filtering 

• Linear Filtering 

• Morphology 

• Connected Components 

2 



Histogram Processing 

• Digital image histogram is the count of pixels in 
an image having a particular value in range 
[0, 𝐿 − 1] 
▫ ℎ 𝑟𝑘 = 𝑛𝑘 

 𝑟𝑘 - the kth gray level value 

 Set of 𝑟𝑘are known as the bins of the histogram 

 𝑛𝑘- the numbers of pixels with kth gray level 

• Empirical probability of gray level occurrence is 
obtained by normalizing the histogram 

▫ 𝑝 𝑟𝑘 = 𝑛𝑘/𝑛 

 𝑛 – total number of pixels 
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Histogram Example 
• x-axis – intensity value 

▫ Bins [0, 255] 

• y-axis – count of pixels 

 

• Dark image 

▫ Concentration in lower values 

• Bright image 

▫ Concentration in higher 
values 

• Low-contrast image 

▫ Narrow band of values 

• High-contrast image 

▫ Intensity values in wide band 
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Histogram Equalization 
• Assume continuous functions 

(rather than discrete images) 

• Define a transformation of the 
intensity values to “equalize” 
each pixel in the image 

▫ 𝑠 = 𝑇 𝑟      0 ≤ 𝑟 ≤ 1 

▫ Notice: intensity values are 
normalized between 0 and 1 

• The inverse transformation is 
given as 

▫ 𝑟 = 𝑇−1 𝑠     0 ≤ 𝑠 ≤ 1 

• Viewing the gray level of an 
image as a random variable 

▫ 𝑝𝑠(𝑠)=𝑝𝑟(𝑟)
𝑑𝑟

𝑑𝑠
 

• Let 𝑠 by the cumulative 
distribution function (CDF) 

▫ 𝑠 = 𝑇 𝑟 =  𝑝𝑟 𝑤 𝑑𝑤
𝑟

0
 

• Then 

▫
𝑑𝑠

𝑑𝑟
= 𝑝𝑟(𝑟) 

• Which results in a uniform 
PDF for the output intensity 

▫ 𝑝𝑠 𝑠 = 1 

 

• Hence, using the  CDF of a 
histogram will “equalize” an 
image 

▫ Make the resulting histogram 
flat across all intensity levels 
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Discrete Histogram Equalization 

• The probability density is approximated by the 
normalized histogram 

▫ 𝑝𝑟 𝑟𝑘 =
𝑛𝑘

𝑛
     𝑘 = 0,… , 𝐿 − 1 

• The discrete CDF transformation is  

▫ 𝑠𝑘 = 𝑇 𝑟𝑘 =  𝑝𝑟(𝑟𝑗)
𝑘
𝑗=0  

▫ 𝑠𝑘 =  
𝑛𝑘

𝑛
𝑘
𝑗=0  

 

• This transformation does not guarantee a 
uniform histogram in the discrete case 
▫ It has the tendency to spread the intensity values 

to span a larger range 

6 



Histogram Equalization Example 
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• Histograms have wider 
spread of intensity levels 

 

• Notice the equalized 
images all have similar 
visual appearance 

▫ Even though histograms 
are different 

▫ Contrast enhancement 

 

Original histogram original image histogram equalized equalized image 



Local Histogram Enhancement 
• Global methods (like 

histogram equalization as 
presented) may not always 
make sense 

▫ What happens when 
properties of image regions 
are different? 

 

• Compute histogram over 
smaller windows 

▫ Break image into “blocks” 

▫ Process each block separately 

• Original image 

 

 

 

 

 

• Block histogram equalization 

 

 

 

 

 

• Notice the blocking effects that 
cause noticeable boundary 
effects 
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Local Enhancement 
• Compute histogram over a block (neighborhood) for every pixel in a moving window 

 

 

 

 

 

 

 

 

 

• Adaptive histogram equalization (AHE) is a computationally efficient method to 
combine block based computations through interpolation 
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Figure 3.8 Locally adaptive histogram equalization: (a) original image; (b) block histogram 
equalization; (c) full locally adaptive equalization. 



Image Processing Motivation 
• Image processing is useful for 

the reduction of noise 

▫ Replace a pixel by the average 
value in a neighborhood 

 

• Common types of noise 

▫ Salt and pepper – random 
occurrences of black and 
white pixels 

▫ Impulse – random 
occurrences of white pixels 

▫ Gaussian – variations in 
intensity drawn from normal 
distribution 
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Adapted from S. Seitz 



Linear Filtering 

• Most common type of neighborhood operator 
• Output pixel is determined as a weighted sum of 

input pixel values 

▫ 𝑔 𝑥, 𝑦 =  𝑓 𝑥 + 𝑘, 𝑦 + 𝑙 𝑤(𝑘, 𝑙)𝑘,𝑙  

 𝑤 – is known as the kernel, mask, filter, template, or 
window 
 𝑤(𝑘, 𝑙) – entry is known as a kernel weight or filter 

coefficient 

• This is also known as the correlation operator 

▫ 𝑔 = 𝑓⨂𝑤 

• Linear filtering (correlation) is the same as 
convolution from signal processing classes 
▫ Convolution you flip your kernel but in correlation 

there is no flip 
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Filtering Operation 
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• 𝑔 𝑥, 𝑦 =
 𝑓 𝑥 + 𝑘, 𝑦 + 𝑙 𝑤(𝑘, 𝑙)𝑘,𝑙  

 

• The filter mask is moved from 
point to point in an image 
• The response is computed 

based on the sum of products of 
the mask coefficients and 
image 

 

• Notice the mask is centered at 
𝑤 0,0  
• Usually we use odd sized masks 

so that the computation is 
symmetrically defined 

 

• Matlab commands 
▫ imfilter.m, filter2.m, 

conv2.m 

 



Filtering Process 
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Computational Requirements 
• Convolution requires 𝐾2 

operations per pixel for a 
𝐾 × 𝐾 size filter 

• Total operations on an image 
is M×𝑁 × 𝐾2 

 

• This can be computationally 
expensive for large 𝐾 

• Cost can be greatly improved if 
the kernel is separable 

▫ First do 1D horizontal 
convolution 

▫ Follow with 2D vertical 
convolution 

• Separable kernel 

▫ 𝑤 = 𝑣ℎ𝑇 

 𝑣 – vertical kernel 

 ℎ - horizontal kernel 

▫ Defined by outer product 

 

• Can approximate a separable 
kernel using singular value 
decomposition (SVD) 

▫ Truly separable kernels will 
only have one non-zero 
singular value 
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Smoothing Filters 

• Smoothing filters are used for blurring and noise 
reduction 

▫ Blurring is useful for small detail removal (object 
detection), bridging small gaps in lines, etc. 

• These filters are known as lowpass filters 

▫ Higher frequencies are attenuated 

▫ What happens to edges? 
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Linear Smoothing Filter 

• The simplest smoothing filter is the moving 
average or box filter 
▫ Computes the average over a constant 

neighborhood 
▫ This is a separable filter 

• Weighted average kernel (bilinear) - places more 
emphasis on closer pixels 
▫ More local consistency 

• Gaussian kernel - an approximation of a 
Gaussian function  
▫ Has variance parameter to control  

the kernel “width” 
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Mean Filtering 
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Mean Filtering 
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Mean Filtering 
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Smoothing Examples 
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Object detection 



Median Filtering 
• Sometimes linear filtering is not sufficient  

▫ Non-linear neighborhood operations are required 
• Median filter – replaces the center pixel in a mask 

by the median of its neighbors 
▫ Non-linear operation, computationally more expensive 
▫ Provides excellent noise-reduction with less blurring 

than smoothing filters of similar size (edge preserving) 
 For impulse and salt-and-pepper noise 
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Bilateral Filtering 

• Combine the idea of a weighted filter kernel with 
a better version of outlier rejection 

▫ 𝛼-trimmed mean calculates average in 
neighborhood excluding the 𝛼 fraction that are 
smallest or largest 

• 𝑤 𝑖, 𝑗, 𝑘, 𝑙 = 𝑑(𝑖, 𝑗, 𝑘, 𝑙) × 𝑟(𝑖, 𝑗, 𝑘, 𝑙) 
▫ 𝑑(𝑖, 𝑗, 𝑘, 𝑙) - domain kernel specifies “distance” 

similarity between pixels (usually Gauassian) 

▫ 𝑟(𝑖, 𝑗, 𝑘, 𝑙) – range kernel specifies “appearance 
(intensity)” similarity between pixels 
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Bilateral Filtering Example 
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Sharpening Filters 

• Sharpening filters are used to highlight fine 
detail or enhance blurred detail 

 

• Smoothing we saw was averaging 

▫ This is analogous to integration 

• Since sharpening is the dual operation to 
smoothing, it can be accomplished through 
differentiation 
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Digital Derivatives 

• Derivatives of digital functions are defined in 
terms of differences 

▫ Various computational approaches 

• Discrete approximation of a derivative 

▫
𝜕𝑓

𝜕𝑥
= 𝑓 𝑥 + 1 − 𝑓(𝑥) 

▫
𝜕𝑓

𝜕𝑥
= 𝑓 𝑥 + 1 − 𝑓(𝑥 − 1) 

 Center symmetric 

• Second-order derivative 

▫
𝜕2𝑓

𝜕𝑥2
= 𝑓 𝑥 + 1 + 𝑓 𝑥 − 1 − 2𝑓(𝑥) 
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Difference Properties 
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• 1st derivative 

▫ Zero in constant segments 

▫ Non-zero at intensity transition 

▫ Non-zero along ramps 

• 2nd derivative 

▫ Zero in constant areas 

▫ Non-zero at intensity transition 

▫ Zero along ramps 

• 2nd order filter is more 
aggressive at enhancing sharp 
edges 

▫ Outputs different at ramps 

 1st order produces thick edges 

 2nd order produces thin edges 

▫ Notice: the step gets both a 
negative and positive response 
in a double line 

 



The Laplacian 
• 2nd derivatives are generally better for image 

enhancement because of sensitivity to fine detail 
• The Laplacian is simplest isotropic derivative operator 

▫ 𝛻2𝑓 =
𝜕2𝑓

𝜕𝑥2 +
𝜕2𝑓

𝜕𝑦2 

▫ Isotropic – rotation invariant 

• Discrete implementation using the 2nd derivative 
previously defined 


𝜕2𝑓

𝜕𝑥2
= 𝑓 𝑥 + 1, 𝑦 + 𝑓 𝑥 − 1, 𝑦 − 2𝑓(𝑥, 𝑦) 


𝜕2𝑓

𝜕𝑥2
= 𝑓 𝑥, 𝑦 + 1 + 𝑓 𝑥, 𝑦 − 1 − 2𝑓 𝑥, 𝑦  

▫ 𝛻2𝑓 =
𝑓 𝑥 + 1, 𝑦 + 𝑓 𝑥 − 1, 𝑦 + 𝑓 𝑥, 𝑦 + 1 + 𝑓 𝑥, 𝑦 − 1 −
4𝑓(𝑥, 𝑦) 
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Discrete Laplacian 
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• Zeros in corners give isotropic 

results for rotations of 90° 

 

• Non-zeros corners give 
isotropic results for rotations 

of 45° 

▫ Include diagonal derivatives 
in Laplacian definition 

 

• Center pixel sign indicates 
light-to-dark or dark-to-light 
transitions 

 



Sharpening Images 
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• Sharpened image created by 
addition of Laplacian 

▫ 𝑔 𝑥, 𝑦 =

 
𝑓 𝑥, 𝑦 − 𝛻2𝑓(𝑥, 𝑦) 𝑤 0,0 < 0

𝑓 𝑥, 𝑦 + 𝛻2𝑓(𝑥, 𝑦) 𝑤 0,0 > 0
 

 

• Notice: the use of diagonal 
entries creates much sharper 
output image 

 

• How can we compute 𝑔(𝑥, 𝑦) 
in one filter pass without the 
image addition? 

▫ Think of a linear system 

 



Unsharp Masking 
• Edges can be obtained by subtracting 

a blurred version of an image 

▫ 𝑓𝑢𝑠 𝑥, 𝑦 = 𝑓 𝑥, 𝑦 − 𝑓 𝑥, 𝑦  

▫ Blurred image 

 𝑓 𝑥, 𝑦 = ℎblur ∗ 𝑓(𝑥, 𝑦) 

• Sharpened image 

▫ 𝑓𝑠 𝑥, 𝑦 = 𝑓 𝑥, 𝑦 + 𝛾𝑓𝑢𝑠 𝑥, 𝑦  
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The Gradient 
• 1st derivatives can be useful for 

enhancement of edges 

▫ Useful preprocessing before 
edge extraction and interest 
point detection 

• The gradient is a vector 
indicating edge direction 

▫ 𝛻f =
𝐺𝑥
𝐺𝑦

=

𝜕𝑓

𝜕𝑥
𝜕𝑓

𝜕𝑦

 

• The gradient magnitude can be 
approximated as 

▫ 𝛻𝑓 ≈ 𝐺𝑥 + 𝐺𝑦  

▫ This give isotropic results for 

rotations of 90° 

• Sobel operators 

▫ Have directional sensitivity  

▫ Coefficients sum to zero 

 Zero response in constant 
intensity region 
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Morphological Image Processing 

• Filtering done on binary images 

▫ Images with two values [0,1], [0, 255], [black,white] 

▫ Typically, this image will be obtained by thresholding 

 𝑔 𝑥, 𝑦 =  
1 𝑓 𝑥, 𝑦 > 𝑇
0 𝑓(𝑥, 𝑦) ≤ 𝑇

 

• Morphology is concerned with the structure and 
shape  

• In morphology, a binary image is convolved with a 
structuring element 𝑠 and results in a binary image 

 

• See Chapter 9 of Gonzalez and Woods for a more 
complete treatment 
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Mathematical Morphology 

• Tool for extracting image components that are 
useful in the representation and description of 
region shape 
▫ Boundaries, skeletons, convex hull, etc. 

• The language of mathematical morphology is set 
theory 
▫ A set represents an object in an image 

 

• This is often useful in video processing because 
of the simplicity of processing and emphasis on 
“objects” 
▫ Handy tool for “clean up” of a thresholded image 

 

35 



Morphological Operations 
• Threshold operation 

▫ 𝜃 𝑓, 𝑡 =  
1 𝑓 ≥ 𝑡
0 else

 

• Structuring element  
▫ 𝑠 – e.g. 3 x 3 box filter (1’s indicate 

included pixels in the mask) 

▫ 𝑆 – number of “on” pixels in 𝑠 

• Count of 1s in a structuring element 

▫ 𝑐 = 𝑓 ⊗ 𝑠 

▫ Correlation (filter) raster scan 
procedure 

 

 

 

 

• Basic morphological operations can 
be extended to grayscale images 

• Dilation 

▫ dilate 𝑓, 𝑠 = 𝜃(𝑐, 1) 

▫ Grows (thickens) 1 locations 

• Erosion 

▫ erode 𝑓, 𝑠 = 𝜃(𝑐, 𝑆) 

▫ Shrink (thins) 1 locations 

• Opening 

▫ open 𝑓, 𝑠 = dilate(erode 𝑓, 𝑠 , 𝑠) 

▫ Generally smooth the contour of an 
object, breaks narrow isthmuses, 
and eliminates thin protrusions 

• Closing 

▫ close 𝑓, 𝑠 = erode(dilate 𝑓, 𝑠 , 𝑠) 

▫ Generally smooth the contour of an 
object, fuses narrow 
breaks/separations, eliminates 
small holes, and fills gaps in a 
contour 
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Morphology Example 

• Dilation - grows (thickens) 1 locations 
• Erosion - shrink (thins) 1 locations 
• Opening - generally smooth the contour of an object, 

breaks narrow isthmuses, and eliminates thin 
protrusions 

• Closing - generally smooth the contour of an object, 
fuses narrow breaks/separations, eliminates small holes, 
and fills gaps in a contour 
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Connected Components 
• Semi-global image operation to provide consistent labels to similar 

regions 

▫ Based on adjacency concept  

• Most efficient algorithms compute in two passes 

 

 

 

 

 

 

 

 

• More computational formulations (iterative) exist from morphology 

▫ 𝑋𝑘 = 𝑋𝑘−1 ⊕𝐵 ∩ 𝐴 
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Connected component Structuring element 

Set 



More Connected Components 

• Typically, only the “white” pixels will be considered 
objects 
▫ Dark pixels are background and do not get counted 

• After labeling connected components, statistics from 
each region can be computed  
▫ Statistics describe the region – e.g. area, centroid, 

perimeter, etc. 

 
• Matlab functions 

▫ bwconncomp.m, labelmatrix.m (bwlabel.m)- 
label image 

▫ label2rgb.m – color components for viewing 
▫ regionprops.m – calculate region statistics 
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Connected Component Example 
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Grayscale image Threshold image 

Opened Image Labeled image – 91 grains of rice 


