
http://www.ee.unlv.edu/~b1morris/ecg795/

EE795: Computer Vision and

Intelligent Systems

Spring 2012

TTh 17:30-18:45 WRI C225

Lecture 04

130131

Outline

• Review

▫ Histogram Equalization

• Image Filtering

• Linear Filtering

• Morphology

• Connected Components

2

Histogram Processing

• Digital image histogram is the count of pixels in
an image having a particular value in range
[0, 𝐿 − 1]
▫ ℎ 𝑟𝑘 = 𝑛𝑘

 𝑟𝑘 - the kth gray level value

 Set of 𝑟𝑘are known as the bins of the histogram

 𝑛𝑘- the numbers of pixels with kth gray level

• Empirical probability of gray level occurrence is
obtained by normalizing the histogram

▫ 𝑝 𝑟𝑘 = 𝑛𝑘/𝑛

 𝑛 – total number of pixels

3

Histogram Example
• x-axis – intensity value

▫ Bins [0, 255]

• y-axis – count of pixels

• Dark image

▫ Concentration in lower values

• Bright image

▫ Concentration in higher
values

• Low-contrast image

▫ Narrow band of values

• High-contrast image

▫ Intensity values in wide band

4

Histogram Equalization
• Assume continuous functions

(rather than discrete images)

• Define a transformation of the
intensity values to “equalize”
each pixel in the image

▫ 𝑠 = 𝑇 𝑟 0 ≤ 𝑟 ≤ 1

▫ Notice: intensity values are
normalized between 0 and 1

• The inverse transformation is
given as

▫ 𝑟 = 𝑇−1 𝑠 0 ≤ 𝑠 ≤ 1

• Viewing the gray level of an
image as a random variable

▫ 𝑝𝑠(𝑠)=𝑝𝑟(𝑟)
𝑑𝑟

𝑑𝑠

• Let 𝑠 by the cumulative
distribution function (CDF)

▫ 𝑠 = 𝑇 𝑟 = 𝑝𝑟 𝑤 𝑑𝑤
𝑟

0

• Then

▫
𝑑𝑠

𝑑𝑟
= 𝑝𝑟(𝑟)

• Which results in a uniform
PDF for the output intensity

▫ 𝑝𝑠 𝑠 = 1

• Hence, using the CDF of a
histogram will “equalize” an
image

▫ Make the resulting histogram
flat across all intensity levels

5

Discrete Histogram Equalization

• The probability density is approximated by the
normalized histogram

▫ 𝑝𝑟 𝑟𝑘 =
𝑛𝑘

𝑛
 𝑘 = 0,… , 𝐿 − 1

• The discrete CDF transformation is

▫ 𝑠𝑘 = 𝑇 𝑟𝑘 = 𝑝𝑟(𝑟𝑗)
𝑘
𝑗=0

▫ 𝑠𝑘 =
𝑛𝑘

𝑛
𝑘
𝑗=0

• This transformation does not guarantee a
uniform histogram in the discrete case
▫ It has the tendency to spread the intensity values

to span a larger range

6

Histogram Equalization Example

7

• Histograms have wider
spread of intensity levels

• Notice the equalized
images all have similar
visual appearance

▫ Even though histograms
are different

▫ Contrast enhancement

Original histogram original image histogram equalized equalized image

Local Histogram Enhancement
• Global methods (like

histogram equalization as
presented) may not always
make sense

▫ What happens when
properties of image regions
are different?

• Compute histogram over
smaller windows

▫ Break image into “blocks”

▫ Process each block separately

• Original image

• Block histogram equalization

• Notice the blocking effects that
cause noticeable boundary
effects

8

Local Enhancement
• Compute histogram over a block (neighborhood) for every pixel in a moving window

• Adaptive histogram equalization (AHE) is a computationally efficient method to
combine block based computations through interpolation

9

Figure 3.8 Locally adaptive histogram equalization: (a) original image; (b) block histogram
equalization; (c) full locally adaptive equalization.

Image Processing Motivation
• Image processing is useful for

the reduction of noise

▫ Replace a pixel by the average
value in a neighborhood

• Common types of noise

▫ Salt and pepper – random
occurrences of black and
white pixels

▫ Impulse – random
occurrences of white pixels

▫ Gaussian – variations in
intensity drawn from normal
distribution

10

Adapted from S. Seitz

Linear Filtering

• Most common type of neighborhood operator
• Output pixel is determined as a weighted sum of

input pixel values

▫ 𝑔 𝑥, 𝑦 = 𝑓 𝑥 + 𝑘, 𝑦 + 𝑙 𝑤(𝑘, 𝑙)𝑘,𝑙

 𝑤 – is known as the kernel, mask, filter, template, or
window
 𝑤(𝑘, 𝑙) – entry is known as a kernel weight or filter

coefficient

• This is also known as the correlation operator

▫ 𝑔 = 𝑓⨂𝑤

• Linear filtering (correlation) is the same as
convolution from signal processing classes
▫ Convolution you flip your kernel but in correlation

there is no flip

11

Filtering Operation

12

• 𝑔 𝑥, 𝑦 =
 𝑓 𝑥 + 𝑘, 𝑦 + 𝑙 𝑤(𝑘, 𝑙)𝑘,𝑙

• The filter mask is moved from
point to point in an image
• The response is computed

based on the sum of products of
the mask coefficients and
image

• Notice the mask is centered at
𝑤 0,0
• Usually we use odd sized masks

so that the computation is
symmetrically defined

• Matlab commands
▫ imfilter.m, filter2.m,

conv2.m

Filtering Process

13

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

𝑔 𝑥, 𝑦 = 𝑓 𝑥 + 𝑘, 𝑦 + 𝑙 𝑤(𝑘, 𝑙)

𝑘,𝑙

𝑓(𝑥, 𝑦) 𝑔(𝑥, 𝑦)

Computational Requirements
• Convolution requires 𝐾2

operations per pixel for a
𝐾 × 𝐾 size filter

• Total operations on an image
is M×𝑁 × 𝐾2

• This can be computationally
expensive for large 𝐾

• Cost can be greatly improved if
the kernel is separable

▫ First do 1D horizontal
convolution

▫ Follow with 2D vertical
convolution

• Separable kernel

▫ 𝑤 = 𝑣ℎ𝑇

 𝑣 – vertical kernel

 ℎ - horizontal kernel

▫ Defined by outer product

• Can approximate a separable
kernel using singular value
decomposition (SVD)

▫ Truly separable kernels will
only have one non-zero
singular value

14

Smoothing Filters

• Smoothing filters are used for blurring and noise
reduction

▫ Blurring is useful for small detail removal (object
detection), bridging small gaps in lines, etc.

• These filters are known as lowpass filters

▫ Higher frequencies are attenuated

▫ What happens to edges?

15

Linear Smoothing Filter

• The simplest smoothing filter is the moving
average or box filter
▫ Computes the average over a constant

neighborhood
▫ This is a separable filter

• Weighted average kernel (bilinear) - places more
emphasis on closer pixels
▫ More local consistency

• Gaussian kernel - an approximation of a
Gaussian function
▫ Has variance parameter to control

the kernel “width”

16

Mean Filtering

17

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

𝑔 𝑥, 𝑦 = 𝑓 𝑥 + 𝑘, 𝑦 + 𝑙 𝑤(𝑘, 𝑙)

𝑘,𝑙

𝑓(𝑥, 𝑦) 𝑔(𝑥, 𝑦)

𝑤 𝑥, 𝑦 - mean of 3 × 3 box

0

0

Mean Filtering

18

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

𝑔 𝑥, 𝑦 = 𝑓 𝑥 + 𝑘, 𝑦 + 𝑙 𝑤(𝑘, 𝑙)

𝑘,𝑙

𝑓(𝑥, 𝑦) 𝑔(𝑥, 𝑦)

𝑤 𝑥, 𝑦 - mean of 3 × 3 box

10

10 0

Mean Filtering

19

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

𝑔 𝑥, 𝑦 = 𝑓 𝑥 + 𝑘, 𝑦 + 𝑙 𝑤(𝑘, 𝑙)

𝑘,𝑙

𝑓(𝑥, 𝑦) 𝑔(𝑥, 𝑦)

𝑤 𝑥, 𝑦 - mean of 3 × 3 box

80

80

10 0

Mean Filtering

20

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

𝑔 𝑥, 𝑦 = 𝑓 𝑥 + 𝑘, 𝑦 + 𝑙 𝑤(𝑘, 𝑙)

𝑘,𝑙

𝑓(𝑥, 𝑦) 𝑔(𝑥, 𝑦)

𝑤 𝑥, 𝑦 - mean of 3 × 3 box

10

Mean Filtering

21

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

𝑔 𝑥, 𝑦 = 𝑓 𝑥 + 𝑘, 𝑦 + 𝑙 𝑤(𝑘, 𝑙)

𝑘,𝑙

𝑓(𝑥, 𝑦) 𝑔(𝑥, 𝑦)

𝑤 𝑥, 𝑦 - mean of 3 × 3 box

0 10 20 30 30 30 20 10

0 20 40 60 60 60 40 20

0 30 60 90 90 90 60 30

0 30 50 80 80 90 60 30

0 30 50 80 80 90 60 30

0 20 30 50 50 60 40 20

10 20 30 30 30 30 20 10

10 10 10 0 0 0 0 0

Smoothing Examples

22

Object detection

Median Filtering
• Sometimes linear filtering is not sufficient

▫ Non-linear neighborhood operations are required
• Median filter – replaces the center pixel in a mask

by the median of its neighbors
▫ Non-linear operation, computationally more expensive
▫ Provides excellent noise-reduction with less blurring

than smoothing filters of similar size (edge preserving)
 For impulse and salt-and-pepper noise

23

Bilateral Filtering

• Combine the idea of a weighted filter kernel with
a better version of outlier rejection

▫ 𝛼-trimmed mean calculates average in
neighborhood excluding the 𝛼 fraction that are
smallest or largest

• 𝑤 𝑖, 𝑗, 𝑘, 𝑙 = 𝑑(𝑖, 𝑗, 𝑘, 𝑙) × 𝑟(𝑖, 𝑗, 𝑘, 𝑙)
▫ 𝑑(𝑖, 𝑗, 𝑘, 𝑙) - domain kernel specifies “distance”

similarity between pixels (usually Gauassian)

▫ 𝑟(𝑖, 𝑗, 𝑘, 𝑙) – range kernel specifies “appearance
(intensity)” similarity between pixels

24

Bilateral Filtering Example

25

Sharpening Filters

• Sharpening filters are used to highlight fine
detail or enhance blurred detail

• Smoothing we saw was averaging

▫ This is analogous to integration

• Since sharpening is the dual operation to
smoothing, it can be accomplished through
differentiation

26

Digital Derivatives

• Derivatives of digital functions are defined in
terms of differences

▫ Various computational approaches

• Discrete approximation of a derivative

▫
𝜕𝑓

𝜕𝑥
= 𝑓 𝑥 + 1 − 𝑓(𝑥)

▫
𝜕𝑓

𝜕𝑥
= 𝑓 𝑥 + 1 − 𝑓(𝑥 − 1)

 Center symmetric

• Second-order derivative

▫
𝜕2𝑓

𝜕𝑥2
= 𝑓 𝑥 + 1 + 𝑓 𝑥 − 1 − 2𝑓(𝑥)

27

Difference Properties

28

• 1st derivative

▫ Zero in constant segments

▫ Non-zero at intensity transition

▫ Non-zero along ramps

• 2nd derivative

▫ Zero in constant areas

▫ Non-zero at intensity transition

▫ Zero along ramps

• 2nd order filter is more
aggressive at enhancing sharp
edges

▫ Outputs different at ramps

 1st order produces thick edges

 2nd order produces thin edges

▫ Notice: the step gets both a
negative and positive response
in a double line

The Laplacian
• 2nd derivatives are generally better for image

enhancement because of sensitivity to fine detail
• The Laplacian is simplest isotropic derivative operator

▫ 𝛻2𝑓 =
𝜕2𝑓

𝜕𝑥2 +
𝜕2𝑓

𝜕𝑦2

▫ Isotropic – rotation invariant

• Discrete implementation using the 2nd derivative
previously defined

𝜕2𝑓

𝜕𝑥2
= 𝑓 𝑥 + 1, 𝑦 + 𝑓 𝑥 − 1, 𝑦 − 2𝑓(𝑥, 𝑦)

𝜕2𝑓

𝜕𝑥2
= 𝑓 𝑥, 𝑦 + 1 + 𝑓 𝑥, 𝑦 − 1 − 2𝑓 𝑥, 𝑦

▫ 𝛻2𝑓 =
𝑓 𝑥 + 1, 𝑦 + 𝑓 𝑥 − 1, 𝑦 + 𝑓 𝑥, 𝑦 + 1 + 𝑓 𝑥, 𝑦 − 1 −
4𝑓(𝑥, 𝑦)

29

Discrete Laplacian

30

• Zeros in corners give isotropic

results for rotations of 90°

• Non-zeros corners give
isotropic results for rotations

of 45°

▫ Include diagonal derivatives
in Laplacian definition

• Center pixel sign indicates
light-to-dark or dark-to-light
transitions

Sharpening Images

31

• Sharpened image created by
addition of Laplacian

▫ 𝑔 𝑥, 𝑦 =

𝑓 𝑥, 𝑦 − 𝛻2𝑓(𝑥, 𝑦) 𝑤 0,0 < 0

𝑓 𝑥, 𝑦 + 𝛻2𝑓(𝑥, 𝑦) 𝑤 0,0 > 0

• Notice: the use of diagonal
entries creates much sharper
output image

• How can we compute 𝑔(𝑥, 𝑦)
in one filter pass without the
image addition?

▫ Think of a linear system

Unsharp Masking
• Edges can be obtained by subtracting

a blurred version of an image

▫ 𝑓𝑢𝑠 𝑥, 𝑦 = 𝑓 𝑥, 𝑦 − 𝑓 𝑥, 𝑦

▫ Blurred image

 𝑓 𝑥, 𝑦 = ℎblur ∗ 𝑓(𝑥, 𝑦)

• Sharpened image

▫ 𝑓𝑠 𝑥, 𝑦 = 𝑓 𝑥, 𝑦 + 𝛾𝑓𝑢𝑠 𝑥, 𝑦

32

The Gradient
• 1st derivatives can be useful for

enhancement of edges

▫ Useful preprocessing before
edge extraction and interest
point detection

• The gradient is a vector
indicating edge direction

▫ 𝛻f =
𝐺𝑥
𝐺𝑦

=

𝜕𝑓

𝜕𝑥
𝜕𝑓

𝜕𝑦

• The gradient magnitude can be
approximated as

▫ 𝛻𝑓 ≈ 𝐺𝑥 + 𝐺𝑦

▫ This give isotropic results for

rotations of 90°

• Sobel operators

▫ Have directional sensitivity

▫ Coefficients sum to zero

 Zero response in constant
intensity region

33

𝐺𝑥 𝐺𝑦

Morphological Image Processing

• Filtering done on binary images

▫ Images with two values [0,1], [0, 255], [black,white]

▫ Typically, this image will be obtained by thresholding

 𝑔 𝑥, 𝑦 =
1 𝑓 𝑥, 𝑦 > 𝑇
0 𝑓(𝑥, 𝑦) ≤ 𝑇

• Morphology is concerned with the structure and
shape

• In morphology, a binary image is convolved with a
structuring element 𝑠 and results in a binary image

• See Chapter 9 of Gonzalez and Woods for a more
complete treatment

34

Mathematical Morphology

• Tool for extracting image components that are
useful in the representation and description of
region shape
▫ Boundaries, skeletons, convex hull, etc.

• The language of mathematical morphology is set
theory
▫ A set represents an object in an image

• This is often useful in video processing because
of the simplicity of processing and emphasis on
“objects”
▫ Handy tool for “clean up” of a thresholded image

35

Morphological Operations
• Threshold operation

▫ 𝜃 𝑓, 𝑡 =
1 𝑓 ≥ 𝑡
0 else

• Structuring element
▫ 𝑠 – e.g. 3 x 3 box filter (1’s indicate

included pixels in the mask)

▫ 𝑆 – number of “on” pixels in 𝑠

• Count of 1s in a structuring element

▫ 𝑐 = 𝑓 ⊗ 𝑠

▫ Correlation (filter) raster scan
procedure

• Basic morphological operations can
be extended to grayscale images

• Dilation

▫ dilate 𝑓, 𝑠 = 𝜃(𝑐, 1)

▫ Grows (thickens) 1 locations

• Erosion

▫ erode 𝑓, 𝑠 = 𝜃(𝑐, 𝑆)

▫ Shrink (thins) 1 locations

• Opening

▫ open 𝑓, 𝑠 = dilate(erode 𝑓, 𝑠 , 𝑠)

▫ Generally smooth the contour of an
object, breaks narrow isthmuses,
and eliminates thin protrusions

• Closing

▫ close 𝑓, 𝑠 = erode(dilate 𝑓, 𝑠 , 𝑠)

▫ Generally smooth the contour of an
object, fuses narrow
breaks/separations, eliminates
small holes, and fills gaps in a
contour

36

Morphology Example

• Dilation - grows (thickens) 1 locations
• Erosion - shrink (thins) 1 locations
• Opening - generally smooth the contour of an object,

breaks narrow isthmuses, and eliminates thin
protrusions

• Closing - generally smooth the contour of an object,
fuses narrow breaks/separations, eliminates small holes,
and fills gaps in a contour

37

Connected Components
• Semi-global image operation to provide consistent labels to similar

regions

▫ Based on adjacency concept

• Most efficient algorithms compute in two passes

• More computational formulations (iterative) exist from morphology

▫ 𝑋𝑘 = 𝑋𝑘−1 ⊕𝐵 ∩ 𝐴

38

Connected component Structuring element

Set

More Connected Components

• Typically, only the “white” pixels will be considered
objects
▫ Dark pixels are background and do not get counted

• After labeling connected components, statistics from
each region can be computed
▫ Statistics describe the region – e.g. area, centroid,

perimeter, etc.

• Matlab functions

▫ bwconncomp.m, labelmatrix.m (bwlabel.m)-
label image

▫ label2rgb.m – color components for viewing
▫ regionprops.m – calculate region statistics

39

Connected Component Example

40

Grayscale image Threshold image

Opened Image Labeled image – 91 grains of rice

