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Interest Point Detection 
 

 

 

 

 

• 𝛻𝐼0 𝒙𝑖   - image gradient 
▫ We have seen how to 

compute this 

• 𝐴 – autocorrelation matrix 

 

 

 
▫ Compute gradient images and 

convolve with weight function 

▫ Also known as second 
moment matrix 

 

 

 

 

 

• The matrix A provides a 
measure of uncertainty in 
location of the patch 

• Do eigenvalue decomposition 
▫ Get eigenvalues and 

eigenvector directions 

▫ Good features have both 
eigenvalues large 

• Quantify uncertainty 
▫ Easiest: look for maxima in 

the smaller eigenvalue [Shi 
and Tomasi] 

▫ det 𝐴 − 𝛼 trace(𝐴)2 [Harris] 

▫ See book for other methods 
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𝐸𝐴𝐶 ∆𝒖 = 𝑤 𝒙𝑖
𝑖

𝐼0 𝒙𝑖 − ∆𝒖 − 𝐼0 𝒙𝑖
2 
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𝐼𝑦𝐼𝑥 𝐼𝑦
2  



Interest Point Detection II 
• The correlation matrix gives a measure of edges in a patch 
• Corner 

▫ Gradient directions 


1
0
,
0
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▫ Correlation matrix 

 𝐴 ∝
1 0
0 1

 

• Edge 
▫ Gradient directions 


1
0

 

▫ Correlation matrix 

 𝐴 ∝
1 0
0 0

 

• Constant 
▫ Gradient directions 

  
0
0

 

▫ Correlation matrix 

 𝐴 ∝
0 0
0 0
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Basic Feature Detection Algorithm  
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Improving Feature Detection 
• Corners may produce more than one strong 

response (due to neighborhood) 
▫ Estimate corner with subpixel accuracy – 

use edge tangents 
▫ Non-maximal suppression – only select 

features that are far enough away 
 Create more uniform distribution – can 

be done through blocking as well 

• Scale invariance  
▫ Use an image pyramid – useful for images 

of same scale 
▫ Compute Hessian of difference of Gaussian 

(DoG) image 
▫ Analyze scale space [SIFT – Lowe 2004] 

• Rotational invariance 
▫ Need to estimate the orientation of the 

feature by examining gradient information 

• Affine invariance 
▫ Closer to appearance change due to 

perspective distortion 
▫ Fit ellipse to autocorrelation matrix and use 

it as an affine coordinate frame 
▫ Maximally stable region (MSER) [Matas 

2004] – regions that do not change much 
through thresholding 
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Feature Descriptors 

• Once keypoints have been detected the local 
appearance needs to be compactly represented 

▫ The representation should enable efficient matching 

• Why not use the image patch itself as the descriptor? 

▫ The descriptor should remain the same in any image 

 Robust to photometric effects, lighting, orientation, scale, 
affine deformation 

▫ The patch intensity can be used in cases where the 
isn’t much appearance change between images (e.g. 
stereo images, satellite images, video) 

• The definition of descriptors to deal with the 
aforementioned issues is still very active 
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Scale Invariant Feature Transform (SIFT) 

• One of the most popular feature descriptor [Lowe 2004] 
▫ Many variants have been developed 

• Descriptor is invariant to uniform scaling, orientation, and partially 
invariant to affine distortion and illumination changes 

• Descriptor computation: 
▫ Compute gradient 16 × 16 grid around keypoint 

 Keep orientation and down-weight magnitude by a Gaussian fall off 
function 
 Avoid sudden changes in descriptor with small position changes 
 Give less emphasis to gradients far from center 

▫ Form a gradient orientation histogram in each 4 × 4 quadrant 
 8 bin orientations 
 Trilinear interpolation of gradient magnitude to neighboring orientation 

bins 
 Gives 4 pixel shift robustness and orientation invariance 

▫ Final descriptor is 4 × 4 × 8 = 128 dimension vector 
 Normalize vector to unit length for contrast/gain invariance 
 Values clipped to 0.2 and renormalized to remove emphasis of large 

gradients (orientation is most important) 
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SIFT Schematic 
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Gradient Location-Orientation Histogram (GLOH) 

• Variant on SIFT to use log-polar binning rather than 4 × 4 quadrant 

▫ Slightly better performance than SIFT 

▫ 272D histogram is projected onto 128D 
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Other SIFT Variants 

• Speeded up robust features (SURF) [Bay 2008]  
▫ Faster computation by using integral images (Szeliski 

3.2.3 and later for object detection) 
▫ Popularized because it is free for non-commercial use 

 SIFT is patented 

• OpenCV implements many  
▫ FAST 
▫ ORB 
▫ BRISK 
▫ FREAK 

• OpenCV is maintained by Willow Garage, a robotics 
company 
▫ Emphasis on fast descriptors for real-time applications 
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Feature Matching 

• Given descriptors from images, determine 
correspondences between descriptors 

• Two parts to the problem 

▫ Matching strategy – how to select “good” 
correspondences 

▫ Efficient search – data structures and algorithms 
to perform matching quickly 
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Matching Strategy 

• Generally, assume that the feature descriptor 
space is sufficient 
▫ Perform whitening of vector to concentrate on 

more interesting dimensions 

• Use Euclidean distance as the error metric 
• Set threshold to only return potential matches 

that are within some predefined “similarity” 
▫ Returns all patches from the other image that are 

similar enough 
▫ Threshold must be set appropriately to ensure 

matches are detected without introducing too 
many erroneous ones 
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Improved Threshold Matching 

• Fixed threshold is difficult to set 

▫ Shouldn’t expect different regions in feature space 
to behave the same 

• Nearest neighbor matching 

▫ Only return the closest matching feature 

▫ A threshold is still required to restrict matching to 
“good” matches 

• Nearest neighbor distance ratio 

▫ Adapt threshold for each feature 

▫ 𝑁𝑁𝐷𝑅 =
𝑑1

𝑑2
=
𝐷𝐴−𝐷𝐵

𝐷𝐴−𝐷𝐶
 

 Best if 𝑑2 is a known not to match 
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Quantifying Performance 
• Confusion matrix-based metrics 

▫ Binary {1,0} classification tasks 
 
 
 
 
 
 

 
 

• True positives (TP) - # correct 
matches 

• False negatives (FN) - # of 
missed matches 

• False positives (FP) - # of 
incorrect matches 

• True negatives (TN) - # of non-
matches that are correctly 
rejected 

• A wide range of metrics can be 
defined 
 

• True positive rate (TPR) 
(sensitivity) 

▫ 𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
=
𝑇𝑃

𝑃
 

▫ Document retrieval  recall – 
fraction of relevant documents 
found 

• False positive rate (FPR) 

▫ 𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
=
𝐹𝑃

𝑁
 

• Positive predicted value (PPV) 

▫ 𝑃𝑃𝑉 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
=
𝑇𝑃

𝑃′
 

▫ Document retrieval  
precision – number of relevant 
documents are returned  

• Accuracy (ACC) 

▫ 𝐴𝐶𝐶 =
𝑇𝑃+𝑇𝑁

𝑃+𝑁
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Receiver Operating Characteristic (ROC) 

• Evaluate matching performance based on threshold 
▫ Examine all thresholds 𝜃 to map out performance 

curve 
• Best performance in upper left corner 

▫ Area under the curve (AUC) is a ROC performance metric 
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Efficient Matching 

• Straight forward matching compares all features 
with every other feature in every image 

▫ Quadratic in the number of features 

• More efficient matching is possible with an indexing 
structure 

▫ Structure enables quick location of similar features 

▫ Can remove many potential search candidates quickly 

• Popular methods are multi-dimensional trees or 
hash tables 

▫ Locality sensitive hashing, parameter-sensitive 
hashing 

▫ k-d trees 
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After Matching 

• Matching gives a list of potential correspondences 

▫ Must determine how to handle these maybe matches 

• Different approaches depending on task 

▫ Object detection – enough matching points constitutes 
a detection 

▫ Image level consistency (e.g. rotation) – determine 
inliers/outliers to estimate image transformation 

• Random sampling (RANSAC) is very popular when 
there is a model to fit 

▫ Take a small random subset of matches, compute the 
model, and verify on the remaining matches 
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Feature Tracking 

• Detect then track approach useful for video 
processing 

• Use the same features we have already seen 

• Tracking accomplished by SSD or NCC 

▫ Usually appearance is sufficient 

• Large motions require hierarchical search strategies 

▫ Match in lower-resolution to provide an initial guess 
for speeded up search 

• Must adapt the appearance model over longer time 
periods 

▫ Kanade-Lucas-Tomasi (KLT) tracker estimates affine 
transformation of the patch in question 
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Edges 

• 2D point features are good for matching 

▫ Limited number of “good” points 

• Edges are plentiful and carry semantic significance 

▫ Object boundaries denoted by visible contours 

▫ Occur at boundaries between regions of different 
color, intensity,  and texture 
 HoG descriptor for object recognition 
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Edge Detection 
• Gradient – slope and direction  

▫ 𝐽 𝑥 = 𝛻𝐼 𝑥 =
𝜕𝐼

𝜕𝑥
,
𝜕𝐼

𝜕𝑦
(𝑥) 

 Points in direction of steepest 
ascent in intensity 

 Magnitude is slope strength 

 Orientation points 
perpendicular to local contour 

• Typically, smooth image with 
Gauassian before computing 
gradient 

▫ Derivative accentuates high 
frequency 

▫ 𝐽𝜎 𝑥 = 𝛻 𝐺𝜎 𝑥 ∗ 𝐼(𝑥) =
𝛻 𝐺𝜎 𝑥 ∗ 𝐼 𝑥  

 𝛻𝐺𝜎 𝑥 =
𝜕𝐺𝜎

𝜕𝑥
,
𝜕𝐼𝐺𝜎

𝜕𝑦
𝑥 =

−𝑥,−𝑦
1

𝜎3
exp −

𝑥2+𝑦2

2𝜎2
 

 

 

 

• Thinner edges are obtained with 
second derivatives 

• Laplacian – looks for zero 
crossings 

▫ 𝑆𝜎 𝑥 = 𝛻 ∙ 𝐽𝜎 𝑥 =
𝛻2𝐺𝜎 𝑥 ∗ 𝐼 𝑥  

• Laplacian of Gaussian (LoG) 
kernel 

▫ 𝛻2𝐺𝜎 𝑥 =
1

𝜎3
2 −
𝑥2+𝑦2

2𝜎2
exp −

𝑥2+𝑦2

2𝜎2
 

 Separable kernel 

▫ Often this is approximated by a 
difference of Gaussians (DoG) 

 Easy to compute when doing 
an image pyramid 



Canny Edge Detection 
• Popular edge detection 

algorithm that produces a thin 
lines 

• 1) Smooth with Gaussian 
kernel 

• 2) Compute gradient 

▫ Determine magnitude and 
orientation (45 degree 8-
connected neighborhood) 

• 3) Use non-maximal 
suppression to get thin edges 

▫ Compare edge value to 
neighbor edgels in gradient 
direction 

 

 

 

 

 

 

• 4) Use hysteresis thresholding 
to prevent streaking 

▫ High threshold to detect 
edge, low threshold to trace 
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𝑝 

𝑝− 

𝑝+ 𝑝 

𝑝− 
𝑝+ 

𝑡ℎ 

𝑡𝑙  

http://homepages.inf.ed.ac.uk/rbf/HIPR2/canny.htm 

object Sobel Canny 



Canny Edge Detection Results 

• Original image 

• Thresholded gradient of smoothed image (thick lines) 

• Marr-Hildreth algorithm 

• Canny algorithm (low noise, thin lines) 
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Lines 

• Edges and curves make up contours of natural 
objects 

▫ Man-made world uses straight lines 

 

• 3D lines can be used to determine vanishing 
points and do camera calibration 

• Estimate pose of 3D scene 
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Hough Transform 

• Lines in the real-world can be broken, collinear, or 
occluded 
▫ Combine these collinear line segments into a larger 

extended line 

• Hough transform creates a parameter space for the 
line 
▫ Every pixel votes for a family of lines passing through 

it 
▫ Potential lines are those bins or accumulator values 

with high count 

• Uses global rather than local information 
 

• See hough.m, radon.m  in Matlab 
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Hough Transform Insight 
• Want to search for all points 

that lie on a line 
▫ This is a large search (take 

two points and count the 
number of edgels) 

• Infinite lines pass through a 
point (𝑥𝑖 , 𝑦𝑖) 

▫ 𝑦𝑖 = 𝑎𝑥𝑖 + 𝑏 

• Reparameterize  

▫ 𝑏 = −𝑥𝑖𝑎 + 𝑦𝑖  
▫ 𝑎𝑏-space representation has 

single line defined by point 
(𝑥𝑖 , 𝑦𝑖) 

 

 

 

 

 

 

 

 

• All points on a line will 
intersect in parameter space 
▫ Divide parameter space into 

cells/bins and accumulate 
votes across all 𝑎 and 𝑏 values 
for a particular point 

▫ Cells with high count are 
indicative of many points 
voting for the same line 
parameters (𝑎, 𝑏) 
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Hough Transform in Practice 

• Use a polar parameterization of a line – why? 
 
 
 
 
 

• After finding bins of high count, need to verify 
edge 
▫ Find the extent of the edge (edges do not go across 

the whole image) 

• This technique can be extended to other shapes 
like circles 
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Hough Transform Example 

 

28 

http://www.mathworks.com/help/images/analyzing-images.html 


