
http://www.ee.unlv.edu/~b1morris/ecg795/

EE795: Computer Vision and

Intelligent Systems

Spring 2012

TTh 17:30-18:45 FDH 204

Lecture 09

130219

Outline

• Review

▫ Feature Descriptors

• Feature Matching

• Feature Tracking

• Edges

▫ Canny Edge Detector

• Lines

▫ Hough Transform

2

Interest Point Detection

• 𝛻𝐼0 𝒙𝑖 - image gradient
▫ We have seen how to

compute this

• 𝐴 – autocorrelation matrix

▫ Compute gradient images and

convolve with weight function

▫ Also known as second
moment matrix

• The matrix A provides a
measure of uncertainty in
location of the patch

• Do eigenvalue decomposition
▫ Get eigenvalues and

eigenvector directions

▫ Good features have both
eigenvalues large

• Quantify uncertainty
▫ Easiest: look for maxima in

the smaller eigenvalue [Shi
and Tomasi]

▫ det 𝐴 − 𝛼 trace(𝐴)2 [Harris]

▫ See book for other methods

3

𝐸𝐴𝐶 ∆𝒖 = 𝑤 𝒙𝑖
𝑖

𝐼0 𝒙𝑖 − ∆𝒖 − 𝐼0 𝒙𝑖
2

= 𝑤 𝒙𝑖
𝑖

𝛻𝐼0 𝒙𝑖 ∙ ∆𝒖
2

= ∆𝒖𝑇𝐴∆𝒖

𝐴 = 𝑤 ∗
𝐼𝑥
2 𝐼𝑥𝐼𝑦

𝐼𝑦𝐼𝑥 𝐼𝑦
2

Interest Point Detection II
• The correlation matrix gives a measure of edges in a patch
• Corner

▫ Gradient directions

1
0
,
0
1

▫ Correlation matrix

 𝐴 ∝
1 0
0 1

• Edge
▫ Gradient directions

1
0

▫ Correlation matrix

 𝐴 ∝
1 0
0 0

• Constant
▫ Gradient directions

0
0

▫ Correlation matrix

 𝐴 ∝
0 0
0 0

4

Basic Feature Detection Algorithm

5

Improving Feature Detection
• Corners may produce more than one strong

response (due to neighborhood)
▫ Estimate corner with subpixel accuracy –

use edge tangents
▫ Non-maximal suppression – only select

features that are far enough away
 Create more uniform distribution – can

be done through blocking as well

• Scale invariance
▫ Use an image pyramid – useful for images

of same scale
▫ Compute Hessian of difference of Gaussian

(DoG) image
▫ Analyze scale space [SIFT – Lowe 2004]

• Rotational invariance
▫ Need to estimate the orientation of the

feature by examining gradient information

• Affine invariance
▫ Closer to appearance change due to

perspective distortion
▫ Fit ellipse to autocorrelation matrix and use

it as an affine coordinate frame
▫ Maximally stable region (MSER) [Matas

2004] – regions that do not change much
through thresholding

6

Feature Descriptors

• Once keypoints have been detected the local
appearance needs to be compactly represented

▫ The representation should enable efficient matching

• Why not use the image patch itself as the descriptor?

▫ The descriptor should remain the same in any image

 Robust to photometric effects, lighting, orientation, scale,
affine deformation

▫ The patch intensity can be used in cases where the
isn’t much appearance change between images (e.g.
stereo images, satellite images, video)

• The definition of descriptors to deal with the
aforementioned issues is still very active

7

Scale Invariant Feature Transform (SIFT)

• One of the most popular feature descriptor [Lowe 2004]
▫ Many variants have been developed

• Descriptor is invariant to uniform scaling, orientation, and partially
invariant to affine distortion and illumination changes

• Descriptor computation:
▫ Compute gradient 16 × 16 grid around keypoint

 Keep orientation and down-weight magnitude by a Gaussian fall off
function
 Avoid sudden changes in descriptor with small position changes
 Give less emphasis to gradients far from center

▫ Form a gradient orientation histogram in each 4 × 4 quadrant
 8 bin orientations
 Trilinear interpolation of gradient magnitude to neighboring orientation

bins
 Gives 4 pixel shift robustness and orientation invariance

▫ Final descriptor is 4 × 4 × 8 = 128 dimension vector
 Normalize vector to unit length for contrast/gain invariance
 Values clipped to 0.2 and renormalized to remove emphasis of large

gradients (orientation is most important)

8

SIFT Schematic

9

Gradient Location-Orientation Histogram (GLOH)

• Variant on SIFT to use log-polar binning rather than 4 × 4 quadrant

▫ Slightly better performance than SIFT

▫ 272D histogram is projected onto 128D

10

Other SIFT Variants

• Speeded up robust features (SURF) [Bay 2008]
▫ Faster computation by using integral images (Szeliski

3.2.3 and later for object detection)
▫ Popularized because it is free for non-commercial use

 SIFT is patented

• OpenCV implements many
▫ FAST
▫ ORB
▫ BRISK
▫ FREAK

• OpenCV is maintained by Willow Garage, a robotics
company
▫ Emphasis on fast descriptors for real-time applications

11

Feature Matching

• Given descriptors from images, determine
correspondences between descriptors

• Two parts to the problem

▫ Matching strategy – how to select “good”
correspondences

▫ Efficient search – data structures and algorithms
to perform matching quickly

12

Matching Strategy

• Generally, assume that the feature descriptor
space is sufficient
▫ Perform whitening of vector to concentrate on

more interesting dimensions

• Use Euclidean distance as the error metric
• Set threshold to only return potential matches

that are within some predefined “similarity”
▫ Returns all patches from the other image that are

similar enough
▫ Threshold must be set appropriately to ensure

matches are detected without introducing too
many erroneous ones

13

Improved Threshold Matching

• Fixed threshold is difficult to set

▫ Shouldn’t expect different regions in feature space
to behave the same

• Nearest neighbor matching

▫ Only return the closest matching feature

▫ A threshold is still required to restrict matching to
“good” matches

• Nearest neighbor distance ratio

▫ Adapt threshold for each feature

▫ 𝑁𝑁𝐷𝑅 =
𝑑1

𝑑2
=
𝐷𝐴−𝐷𝐵

𝐷𝐴−𝐷𝐶

 Best if 𝑑2 is a known not to match

14

Quantifying Performance
• Confusion matrix-based metrics

▫ Binary {1,0} classification tasks

• True positives (TP) - # correct
matches

• False negatives (FN) - # of
missed matches

• False positives (FP) - # of
incorrect matches

• True negatives (TN) - # of non-
matches that are correctly
rejected

• A wide range of metrics can be
defined

• True positive rate (TPR)
(sensitivity)

▫ 𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
=
𝑇𝑃

𝑃

▫ Document retrieval recall –
fraction of relevant documents
found

• False positive rate (FPR)

▫ 𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
=
𝐹𝑃

𝑁

• Positive predicted value (PPV)

▫ 𝑃𝑃𝑉 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
=
𝑇𝑃

𝑃′

▫ Document retrieval
precision – number of relevant
documents are returned

• Accuracy (ACC)

▫ 𝐴𝐶𝐶 =
𝑇𝑃+𝑇𝑁

𝑃+𝑁

15

actual value

p
re

d
ic

te
d

o

u
tc

o
m

e

p n total

p’ TP FP P’

n’ FN TN N’

total P N

http://en.wikipedia.org/wiki/Receiver_operating_characteristic
http://en.wikipedia.org/wiki/Receiver_operating_characteristic

Receiver Operating Characteristic (ROC)

• Evaluate matching performance based on threshold
▫ Examine all thresholds 𝜃 to map out performance

curve
• Best performance in upper left corner

▫ Area under the curve (AUC) is a ROC performance metric

16

Efficient Matching

• Straight forward matching compares all features
with every other feature in every image

▫ Quadratic in the number of features

• More efficient matching is possible with an indexing
structure

▫ Structure enables quick location of similar features

▫ Can remove many potential search candidates quickly

• Popular methods are multi-dimensional trees or
hash tables

▫ Locality sensitive hashing, parameter-sensitive
hashing

▫ k-d trees

17

After Matching

• Matching gives a list of potential correspondences

▫ Must determine how to handle these maybe matches

• Different approaches depending on task

▫ Object detection – enough matching points constitutes
a detection

▫ Image level consistency (e.g. rotation) – determine
inliers/outliers to estimate image transformation

• Random sampling (RANSAC) is very popular when
there is a model to fit

▫ Take a small random subset of matches, compute the
model, and verify on the remaining matches

18

Feature Tracking

• Detect then track approach useful for video
processing

• Use the same features we have already seen

• Tracking accomplished by SSD or NCC

▫ Usually appearance is sufficient

• Large motions require hierarchical search strategies

▫ Match in lower-resolution to provide an initial guess
for speeded up search

• Must adapt the appearance model over longer time
periods

▫ Kanade-Lucas-Tomasi (KLT) tracker estimates affine
transformation of the patch in question

19

Edges

• 2D point features are good for matching

▫ Limited number of “good” points

• Edges are plentiful and carry semantic significance

▫ Object boundaries denoted by visible contours

▫ Occur at boundaries between regions of different
color, intensity, and texture
 HoG descriptor for object recognition

20

Edge Detection
• Gradient – slope and direction

▫ 𝐽 𝑥 = 𝛻𝐼 𝑥 =
𝜕𝐼

𝜕𝑥
,
𝜕𝐼

𝜕𝑦
(𝑥)

 Points in direction of steepest
ascent in intensity

 Magnitude is slope strength

 Orientation points
perpendicular to local contour

• Typically, smooth image with
Gauassian before computing
gradient

▫ Derivative accentuates high
frequency

▫ 𝐽𝜎 𝑥 = 𝛻 𝐺𝜎 𝑥 ∗ 𝐼(𝑥) =
𝛻 𝐺𝜎 𝑥 ∗ 𝐼 𝑥

 𝛻𝐺𝜎 𝑥 =
𝜕𝐺𝜎

𝜕𝑥
,
𝜕𝐼𝐺𝜎

𝜕𝑦
𝑥 =

−𝑥,−𝑦
1

𝜎3
exp −

𝑥2+𝑦2

2𝜎2

• Thinner edges are obtained with
second derivatives

• Laplacian – looks for zero
crossings

▫ 𝑆𝜎 𝑥 = 𝛻 ∙ 𝐽𝜎 𝑥 =
𝛻2𝐺𝜎 𝑥 ∗ 𝐼 𝑥

• Laplacian of Gaussian (LoG)
kernel

▫ 𝛻2𝐺𝜎 𝑥 =
1

𝜎3
2 −
𝑥2+𝑦2

2𝜎2
exp −

𝑥2+𝑦2

2𝜎2

 Separable kernel

▫ Often this is approximated by a
difference of Gaussians (DoG)

 Easy to compute when doing
an image pyramid

Canny Edge Detection
• Popular edge detection

algorithm that produces a thin
lines

• 1) Smooth with Gaussian
kernel

• 2) Compute gradient

▫ Determine magnitude and
orientation (45 degree 8-
connected neighborhood)

• 3) Use non-maximal
suppression to get thin edges

▫ Compare edge value to
neighbor edgels in gradient
direction

• 4) Use hysteresis thresholding
to prevent streaking

▫ High threshold to detect
edge, low threshold to trace

22

𝑝

𝑝−

𝑝+ 𝑝

𝑝−
𝑝+

𝑡ℎ

𝑡𝑙

http://homepages.inf.ed.ac.uk/rbf/HIPR2/canny.htm

object Sobel Canny

Canny Edge Detection Results

• Original image

• Thresholded gradient of smoothed image (thick lines)

• Marr-Hildreth algorithm

• Canny algorithm (low noise, thin lines)

23

Lines

• Edges and curves make up contours of natural
objects

▫ Man-made world uses straight lines

• 3D lines can be used to determine vanishing
points and do camera calibration

• Estimate pose of 3D scene

24

Hough Transform

• Lines in the real-world can be broken, collinear, or
occluded
▫ Combine these collinear line segments into a larger

extended line

• Hough transform creates a parameter space for the
line
▫ Every pixel votes for a family of lines passing through

it
▫ Potential lines are those bins or accumulator values

with high count

• Uses global rather than local information

• See hough.m, radon.m in Matlab

25

Hough Transform Insight
• Want to search for all points

that lie on a line
▫ This is a large search (take

two points and count the
number of edgels)

• Infinite lines pass through a
point (𝑥𝑖 , 𝑦𝑖)

▫ 𝑦𝑖 = 𝑎𝑥𝑖 + 𝑏

• Reparameterize

▫ 𝑏 = −𝑥𝑖𝑎 + 𝑦𝑖
▫ 𝑎𝑏-space representation has

single line defined by point
(𝑥𝑖 , 𝑦𝑖)

• All points on a line will
intersect in parameter space
▫ Divide parameter space into

cells/bins and accumulate
votes across all 𝑎 and 𝑏 values
for a particular point

▫ Cells with high count are
indicative of many points
voting for the same line
parameters (𝑎, 𝑏)

26

Hough Transform in Practice

• Use a polar parameterization of a line – why?

• After finding bins of high count, need to verify
edge
▫ Find the extent of the edge (edges do not go across

the whole image)

• This technique can be extended to other shapes
like circles

27

Hough Transform Example

28

http://www.mathworks.com/help/images/analyzing-images.html

