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Outline 

• Review 

▫ Feature-Based Alignment 

▫ Image Warping 

▫ 2D Alignment Using Least Squares 

• Mosaics 

• Panoramas 
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Feature-Based Alignment 
• After detecting and matching features, may want to verify if the 

matches are geometrically consistent 
▫ Can feature displacements be described by 2D and 3D geometric 

transformations 
 
 
 
 
 
 

 
• Provides 
• Geometric registration 

▫ 2D/3D mapping between images 
• Pose estimation 

▫ Camera position with respect to a known 3D scene/object 
• Intrinsic camera calibration 

▫ Find internal parameters of cameras (e.g. focal length, radial distortion) 
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Image Warping 

• image filtering: change range of image 

• g(x) = h(f(x)) 

 

 

 

• image warping: change domain of image 
• g(x) = f(h(x)) 

 

f 

x 

h 

f 

x 

f 

x 

h 

f 

x 



Richard Szeliski Image Stitching 

5 

Image Warping 

• image filtering: change range of image 
• g(x) = h(f(x)) 

 
 

 

• image warping: change domain of image 

• g(x) = f(h(x)) 
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Parametric (global) warping 

• Examples of parametric warps: 

translation rotation aspect 

affine 
perspective 

cylindrical 



Richard Szeliski Image Stitching 

7 

2D coordinate transformations 

• translation: x’ = x + t   x = (x,y) 

• rotation:  x’ = R x + t 

• similarity: x’ = s R x + t 

• affine:  x’ = A x + t 

• perspective: x’  H x   x = (x,y,1) 
 (x is a homogeneous coordinate) 

• These all form a nested group (closed w/ inv.) 
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Image Warping 

• Given a coordinate transform x’ = h(x) and a 
source image f(x), how do we compute a 
transformed image g(x’) = f(h(x))? 

f(x) g(x’) 
x x’ 

h(x) 
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Forward Warping 

• Send each pixel f(x) to its corresponding 
location x’ = h(x) in g(x’) 

f(x) g(x’) 
x x’ 

h(x) 

• What if pixel lands “between” two pixels? 
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Forward Warping 

• Send each pixel f(x) to its corresponding 
location x’ = h(x) in g(x’) 

f(x) g(x’) 
x x’ 

h(x) 

• What if pixel lands “between” two pixels? 

• Answer: add “contribution” to several pixels, 

normalize later (splatting) 

• See griddata.m  
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Inverse Warping 

• Get each pixel g(x’) from its corresponding 
location x = h-1(x’) in f(x) 

f(x) g(x’) 
x x’ 

h(x) 

• What if pixel comes from “between” two pixels? 



Richard Szeliski Image Stitching 

12 

Inverse Warping 

• Get each pixel g(x’) from its corresponding 
location x = h-1(x’) in f(x) 

• What if pixel comes from “between” two pixels? 

• Answer: resample color value from 

interpolated (prefiltered) source image 

• See interp2.m  

f(x) g(x’) 
x x’ 



Forward vs. Inverse Warping 

• Which type of warping is better? 

 

• Usually inverse warping is preferred 

▫ It eliminates holes 

▫ However, it requires an invertible warp function 

 Not always possible 
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Least Squares Alignment 

• Given a set of matched features 𝑥𝑖 , 𝑥𝑖
′ , 

minimize sum of squared residual error 

▫ 𝐸𝐿𝑆 =  𝑟𝑖
2 =𝑖  𝑓 𝑥𝑖; 𝑝 − 𝑥𝑖

′ 2
𝑖  

 𝑓 𝑥𝑖; 𝑝  - is the predicted location based on the 
transformation 𝑝 

 

• The unknowns are the parameters 𝑝 

▫ Need to have a model for transformation 

▫ Estimate the parameters based on matched 
features 
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Linear Least Squares Alignment 
• Many useful motion models have a linear 

relationship between motion and parameters 𝑝 

▫ Δ𝑥 = 𝑥′ − 𝑥 = 𝐽 𝑥 𝑝 

 𝐽 =
𝜕𝑓

𝜕𝑝
 - the Jacobian of the transform 𝑓 with respect to 

the motion parameters 𝑝 

• Linear least squares 

▫ 𝐸𝐿𝐿𝑆 =  𝐽 𝑥𝑖 𝑝 − Δ𝑥𝑖
2 =𝑖 𝑝𝑇𝐴𝑝 − 2𝑝𝑇𝑏 + 𝑐 

 Quadratic form 

• The minimum is found by solving the normal 
equations 

▫ 𝐴𝑝 = 𝑏 
 𝐴 =  𝐽𝑇(𝑖 𝑥𝑖)𝐽(𝑥𝑖) – Hessian matrix 

 𝑏 =  𝐽𝑇(𝑖 𝑥𝑖)Δ𝑥𝑖 
▫ Gives the LLS estimate for the motion parameters 
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Jacobians of 2D Transformations 

 

16 



Improving Motion Estimates 
• A number of techniques can improve upon linear least 

squares 
• Uncertainty weighting  

▫ Weight the matches based certainty of the match – texture 
in the match region 

• Non-linear least squares 
▫ Iterative algorithm to guess parameters and iteratively 

improve guess 

• Robust least squares 
▫ Explicitly handle outliers (bad matches) – don’t use L2 

norm 

• RANSAC 
▫ Randomly select subset of corresponding points, compute 

initial estimate of 𝑝, count the inliers from all the other 
correspondences, good match has many inliers  
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Image Mosaics 

•  
     +         +   …   +  = 

Goal:  Stitch together several images into a 

seamless composite 
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Motion models 

Translation 

2 unknowns 

Affine 

6 unknowns 

Perspective 

8 unknowns 

3D rotation 

3 unknowns 
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Plane perspective mosaics 

▫ 8-parameter generalization of affine motion 

 works for pure rotation or planar surfaces 

▫ Limitations: 

 local minima  

 slow convergence 

 difficult to control interactively 
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Image warping with homographies 

 

 

image plane in front image plane below 
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Rotational mosaics 

▫ Directly optimize rotation and focal length 

▫ Advantages: 

 ability to build full-view  
panoramas 

 easier to control interactively 

 more stable and accurate  
estimates 



Richard Szeliski Image Stitching 

23 

3D → 2D Perspective Projection 
 
 

u 

(Xc,Yc,Zc) 

uc f 
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Rotational mosaic 

• Projection equations 

1. Project from image to 3D ray 

•  (x0,y0,z0)  = (u0-uc,v0-vc,f) 

2. Rotate the ray by camera motion 

•  (x1,y1,z1)  = R01 (x0,y0,z0) 

3. Project back into new (source) image 

•  (u1,v1) = (fx1/z1+uc,fy1/z1+vc) 

 



Richard Szeliski Image Stitching 

25 

mosaic PP 

Image reprojection 

• The mosaic has a natural interpretation in 3D 

▫ The images are reprojected onto a common plane 

▫ The mosaic is formed on this plane 
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Image Mosaics (stitching) 

• Blend together several overlapping images into 
one seamless mosaic (composite) 

▫ [Szeliski & Shum, SIGGRAPH’97] 

▫ [Szeliski, FnT CVCG, 2006] 

 

•      +         +   …   +  = 
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Mosaics for Video Coding 

• Convert masked images into a background 
sprite for content-based coding 

 

•    +    +      + 

 

•  
= 
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Establishing correspondences 

1. Direct method: 

▫ Use generalization of affine motion model 
[Szeliski & Shum ’97] 

2. Feature-based method 

▫ Extract features, match, find consisten inliers 
[Lowe ICCV’99; Schmid ICCV’98, 
Brown&Lowe ICCV’2003] 

▫ Compute R from correspondences 
(absolute orientation) 
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Stitching demo 
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Panoramas 

• What if you want a 360 field of view? 

mosaic Projection Cylinder 
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Cylindrical panoramas 

• Steps 
▫ Reproject each image onto a cylinder 
▫ Blend  
▫ Output the resulting mosaic 

mcmillan.mpeg


Cylindrical Panoramas 

• Map image to cylindrical or spherical 
coordinates 

▫ need known focal length 
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f = 180 (pixels) Image 384x300 f = 380 f = 280 
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▫ Map 3D point (X,Y,Z) onto cylinder 

Cylindrical projection 

X 

Y 

Z 

unit cylinder 

unwrapped cylinder 

• Convert to cylindrical coordinates 

cylindrical image 

• Convert to cylindrical image coordinates 

– s defines size of the final image 
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Cylindrical warping 

•Given focal length f and 
image center (xc,yc) 

X 

Y 

Z 

(X,Y,Z) 

(sinq,h,cosq) 
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Spherical warping 

•Given focal length f and 
image center (xc,yc) 

X 

Y 

Z 

(x,y,z) 

(sinθcosφ,cosθcosφ,sin
φ) 

cos φ 

φ 

cos θ cos φ 

sin φ 



Richard Szeliski Image Stitching 

36 

3D rotation 

•Rotate image before 
placing on unrolled sphere 

(x,y,z) 

(sinθcosφ,cosθcosφ,sin
φ) 

cos φ 

φ 

cos θ cos φ 

sin φ 

_    _ 

_    _ 

p = R p 



Distortion Correction 
• Radial distortion  

▫ Correct for “bending” in wide 
field of view lenses 

 

• Fisheye lens 

▫ Extreme “bending” in ultra-
wide fields of view 

 

37 

Adapted from R. Szeliski 
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Image Stitching 

1. Align the images over each other 

▫ camera pan ↔ translation on cylinder 

2. Blend the images together 
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Image stitching steps 

1. Take pictures on a tripod (or handheld) 

2. Warp images to spherical coordinates 

3. Extract features 

4. Align neighboring pairs using RANSAC 

5. Write out list of neighboring translations 

6. Correct for drift 

7. Read in warped images and blend them 

8. Crop the result and import into a viewer 
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Matching features 

What do we do about the “bad” matches? 
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RAndom SAmple Consensus 

Select one match, count inliers 
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RAndom SAmple Consensus 

Select one match, count inliers 
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Least squares fit 

Find “average” translation vector 
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Assembling the panorama 

• Stitch pairs together, blend, then crop 
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Problem:  Drift 

• Error accumulation 

▫ small (vertical) errors accumulate over time 

▫ apply correction so that sum = 0 (for 360° pan.) 
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Problem:  Drift 

• Solution 
▫ add another copy of first image at the end 
▫ this gives a constraint:  yn = y1 
▫ there are a bunch of ways to solve this problem 

 add displacement of (y1 – yn)/(n -1) to each image after the 
first 

 compute a global warp:  y’ = y + ax 
 run a big optimization problem, incorporating this 

constraint 
 best solution, but more complicated 
 known as “bundle adjustment” 

(x1,y1) 

copy of first 

image 

(xn,yn) 
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Full-view Panorama 

+ 

+ 

+ 

+ 
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Texture Mapped Model 
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Global alignment 

• Register all pairwise overlapping images 

• Use a 3D rotation model (one R per image) 

• Use direct alignment (patch centers) or feature 
based 

• Infer overlaps based on previous matches 
(incremental) 

• Optionally discover which images overlap other 
images using feature selection (RANSAC) 
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Recognizing Panoramas 

[Brown & Lowe, 
ICCV’03] 
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Finding the panoramas 
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Finding the panoramas 
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Finding the panoramas 
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Finding the panoramas 



Fully automated 2D stitching 

• Free copy from Microsoft Essentials 

▫ http://windows.microsoft.com/en-us/windows-
live/photo-gallery-get-started 
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Final thought: 

What is a “panorama”? 

• Tracking a subject 
▫ Panorama 
 

• Repeated (best) shots 
▫ Photo Fuse 

 

• Multiple exposures 
▫ Photo Fuse 

 
 
 

• “Infer” what photographer wants? 


