EE795: Computer Vision and Intelligent Systems

Spring 2012 TTh 17:30-18:45 FDH 204

Lecture 11 130226

http://www.ee.unlv.edu/~b1morris/ecg795/

Outline

- Review
 - Feature-Based Alignment
 - Image Warping
 - D Alignment Using Least Squares
- Mosaics
- Panoramas

Feature-Based Alignment

- After detecting and matching features, may want to verify if the matches are geometrically consistent
 - Can feature displacements be described by 2D and 3D geometric transformations

Figure 6.2 Basic set of 2D planar transformations

- Provides
- Geometric registration
 - 2D/3D mapping between images
- Pose estimation
 - Camera position with respect to a known 3D scene/object
- Intrinsic camera calibration
 - Find internal parameters of cameras (e.g. focal length, radial distortion)

Image Warping

• image filtering: change *range* of image

•
$$g(x) = h(f(x))$$

image warping: change *domain* of image
g(x) = f(h(x))

Image Warping

• image filtering: change *range* of image

•
$$g(x) = h(f(x))$$

• image warping: change *domain* of image

•
$$g(x) = f(h(x))$$

$$\longrightarrow$$
 h \longrightarrow

Parametric (global) warping

• Examples of parametric warps:

translation

rotation

aspect

affine

perspective

cylindrical

2D coordinate transformations

- translation: x' = x + t
- rotation: x' = R x + t
- similarity: x' = s R x + t
- affine: x' = A x + t
- perspective: $\underline{x}' \cong H \underline{x}$ $\underline{x} = (x,y,1)$ (\underline{x} is a homogeneous coordinate)
- These all form a nested *group* (closed w/ inv.)

 $\boldsymbol{x} = (x,y)$

Image Warping

Given a coordinate transform x' = h(x) and a source image f(x), how do we compute a transformed image g(x') = f(h(x))?

Forward Warping

- Send each pixel *f*(*x*) to its corresponding location *x*' = *h*(*x*) in *g*(*x*')
 - What if pixel lands "between" two pixels?

Forward Warping

- Send each pixel *f*(*x*) to its corresponding location *x*' = *h*(*x*) in *g*(*x*')
 - What if pixel lands "between" two pixels?
 - Answer: add "contribution" to several pixels, normalize later (*splatting*)
 - See griddata.m

Inverse Warping

- Get each pixel g(x') from its corresponding location $x = h^{-1}(x')$ in f(x)
 - What if pixel comes from "between" two pixels?

Inverse Warping

- Get each pixel g(x') from its corresponding location $x = h^{-1}(x')$ in f(x)
 - What if pixel comes from "between" two pixels?
 - Answer: resample color value from interpolated (prefiltered) source image
 - See interp2.m

Forward vs. Inverse Warping

- Which type of warping is better?
- Usually inverse warping is preferred
 - It eliminates holes
 - However, it requires an invertible warp function
 - Not always possible

13

Least Squares Alignment

- Given a set of matched features {(x_i, x'_i)}, minimize sum of squared residual error
 - $E_{LS} = \sum_i ||r_i||^2 = \sum_i ||f(x_i; p) x'_i||^2$
 - $f(x_i; p)$ is the predicted location based on the transformation p
- The unknowns are the parameters *p*
 - Need to have a model for transformation
 - Estimate the parameters based on matched features

Linear Least Squares Alignment

• Many useful motion models have a linear relationship between motion and parameters *p*

$$\Delta x = \frac{x'}{\partial f} - x = J(x)p$$

- $J = \frac{\partial f}{\partial p}$ the Jacobian of the transform *f* with respect to the motion parameters *p*
- Linear least squares
 - $E_{LLS} = \sum_i ||J(x_i)p \Delta x_i||^2 = p^T A p 2p^T b + c$
 - Quadratic form
- The minimum is found by solving the normal equations
 - Ap = b
 - $A = \sum_{i} J^{T}(x_{i}) J(x_{i})$ Hessian matrix
 - $b = \sum_{i} J^{T}(x_{i}) \Delta x_{i}$
 - Gives the LLS estimate for the motion parameters

Jacobians of 2D Transformations

Transform	Matrix	Parameters p	Jacobian J
translation	$\left[\begin{array}{rrrr} 1 & 0 & t_x \\ 0 & 1 & t_y \end{array}\right]$	(t_x,t_y)	$\left[\begin{array}{rrr}1&0\\0&1\end{array}\right]$
Euclidean	$\begin{bmatrix} c_{\theta} & -s_{\theta} & t_x \\ s_{\theta} & c_{\theta} & t_y \end{bmatrix}$	(t_x, t_y, θ)	$\left[\begin{array}{rrrr} 1 & 0 & -s_{\theta}x - c_{\theta}y \\ 0 & 1 & c_{\theta}x - s_{\theta}y \end{array}\right]$
similarity	$\left[\begin{array}{rrrr} 1+a & -b & t_x \\ b & 1+a & t_y \end{array}\right]$	(t_x, t_y, a, b)	$\left[\begin{array}{rrrrr}1&0&x&-y\\0&1&y&x\end{array}\right]$
affine	$\left[\begin{array}{ccc} 1 + a_{00} & a_{01} & t_x \\ a_{10} & 1 + a_{11} & t_y \end{array}\right]$	$(t_x, t_y, a_{00}, a_{01}, a_{10}, a_{11})$	$\left[\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
projective	$\begin{bmatrix} 1+h_{00} & h_{01} & h_{02} \\ h_{10} & 1+h_{11} & h_{12} \\ h_{20} & h_{21} & 1 \end{bmatrix}$	$(h_{00}, h_{01}, \dots, h_{21})$	(see Section 6.1.3)

Table 6.1 Jacobians of the 2D coordinate transformations x' = f(x; p) shown in Table 2.1, where we have re-parameterized the motions so that they are identity for p = 0.

Improving Motion Estimates

- A number of techniques can improve upon linear least squares
- Uncertainty weighting
 - Weight the matches based certainty of the match texture in the match region
- Non-linear least squares
 - Iterative algorithm to guess parameters and iteratively improve guess
- Robust least squares
 - Explicitly handle outliers (bad matches) don't use L2 norm
- RANSAC
 - Randomly select subset of corresponding points, compute initial estimate of *p*, count the inliers from all the other correspondences, good match has many inliers

Image Mosaics

Goal: Stitch together several images into a seamless composite

Motion models

Translation

Affine

3D rotation

2 unknowns

6 unknowns

8 unknowns

3 unknowns

Plane perspective mosaics

- 8-parameter generalization of affine motion
 - works for pure rotation or planar surfaces
- Limitations:
 - local minima
 - slow convergence
 - difficult to control interactively

Richard Szeliski

Image warping with homographies

Rotational mosaics

- Directly optimize rotation and focal length
- Advantages:
 - ability to build full-view panoramas
 - easier to control interactively
 - more stable and accurate estimates

 $\begin{bmatrix} u \\ v \\ 1 \end{bmatrix} \sim \begin{bmatrix} U \\ V \\ W \end{bmatrix} = \begin{bmatrix} f & 0 & u_c \\ 0 & f & v_c \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} X_c \\ Y_c \\ Z_c \end{bmatrix}$

23

Rotational mosaic

- Projection equations
- 1. Project from image to 3D ray
- $(x_0, y_0, z_0) = (u_0 u_c, v_0 v_c, f)$
- 2. Rotate the ray by camera motion

•
$$(x_1, y_1, z_1) = \mathbf{R}_{01} (x_0, y_0, z_0)$$

- 3. Project back into new (source) image
- $(u_1, v_1) = (fx_1/z_1 + u_c, fy_1/z_1 + v_c)$

Image reprojection

The mosaic has a natural interpretation in 3D

- The images are reprojected onto a common plane
- The mosaic is formed on this plane

Image Mosaics (stitching)

- Blend together several overlapping images into one seamless *mosaic* (composite)
 - [Szeliski & Shum, SIGGRAPH'97]
 - Szeliski, FnT CVCG, 2006]

Richard Szeliski

Mosaics for Video Coding

 Convert masked images into a background sprite for content-based coding

Establishing correspondences

- 1. Direct method:
 - Use generalization of affine motion model [Szeliski & Shum '97]
- 2. Feature-based method
 - Extract features, match, find consisten *inliers* [Lowe ICCV'99; Schmid ICCV'98, Brown&Lowe ICCV'2003]
 - Compute *R* from correspondences (absolute orientation)

Stitching demo

30

Panoramas

• What if you want a 360° field of view?

Cylindrical panoramas

- Steps
 - Reproject each image onto a cylinder
 - Blend
 - Output the resulting mosaic

Cylindrical Panoramas

- Map image to cylindrical or spherical coordinates
 - need known focal length

Image 384x300 f = 180 (pixels) f = 280 f = 380

Cylindrical projection

 $(\widehat{x},\widehat{y},\widehat{z})$, X unit cylinder $(\overset{\boldsymbol{h}}{\tilde{x}_c}, \overset{\boldsymbol{h}}{\tilde{y}_c})$

unwrapped cylinder

(X, Y, Z) ^a Map 3D point (X,Y,Z) onto cylinder

$$(\hat{x}, \hat{y}, \hat{z}) = \frac{1}{\sqrt{X^2 + Z^2}} (X, Y, Z)$$

- Convert to cylindrical coordinates $(sin\theta, h, cos\theta) = (\hat{x}, \hat{y}, \hat{z})$
- Convert to cylindrical image coordinates

$$(\tilde{x}, \tilde{y}) = (s\theta, sh) + (\tilde{x}_c, \tilde{y}_c)$$

- s defines size of the final image

Cylindrical warping

•Given focal length f and image center (x_c, y_c)

$$\theta = (x_{cyl} - x_c)/f$$

$$h = (y_{cyl} - y_c)/f$$

$$\hat{x} = \sin \theta$$

$$\hat{y} = h$$

$$\hat{z} = \cos \theta$$

$$x = f\hat{x}/\hat{z} + x_c$$

$$y = f\hat{y}/\hat{z} + y_c$$

Spherical warping

•Given focal length f and image center (x_c, y_c)

 $\theta = (x_{cyl} - x_c)/f$ $\varphi = (y_{cyl} - y_c)/f$ $\hat{x} = \sin \theta \cos \varphi$ $\hat{y} = \sin \varphi$ $\hat{z} = \cos \theta \cos \varphi$ $x = f\hat{x}/\hat{z} + x_c$ $y = f\hat{y}/\hat{z} + y_c$

 θ

3D rotation

•Rotate image before placing on unrolled sphere

$$= (x_{cyl} - x_c)/f$$

$$= (y_{cyl} - y_c)/f$$

$$= \sin \theta \cos \varphi$$

$$= \sin \varphi$$

$$= \cos \theta \cos \varphi$$

$$= f\hat{x}/\hat{z} + x_c$$

$$= f\hat{y}/\hat{z} + y_c$$

Distortion Correction

- Radial distortion
 - Correct for "bending" in wide field of view lenses

- Fisheye lens
 - Extreme "bending" in ultrawide fields of view

37

Image Stitching

1. Align the images over each other

- camera pan \leftrightarrow translation on cylinder
- 2. Blend the images together

Image stitching steps

- 1. Take pictures on a tripod (or handheld)
- 2. Warp images to spherical coordinates
- 3. Extract features
- 4. Align neighboring pairs using RANSAC
- 5. Write out list of neighboring translations
- 6. Correct for drift
- 7. Read in warped images and blend them
- 8. Crop the result and import into a viewer

Matching features

41

<u>RAndom SAmple Consensus</u>

<u>RAndom SAmple Consensus</u>

Select one match, count inliers

Least squares fit

Assembling the panorama

|--|--|--|

• Stitch pairs together, blend, then crop

Problem: Drift

- Error accumulation
 - small (vertical) errors accumulate over time
 - apply correction so that sum = 0 (for 360° pan.)

Problem: Drift

- Solution
 - add another copy of first image at the end
 - this gives a constraint: $y_n = y_1$
 - there are a bunch of ways to solve this problem
 - add displacement of $(y_1 y_n)/(n 1)$ to each image after the first
 - compute a global warp: y' = y + ax
 - run a big optimization problem, incorporating this constraint
 - best solution, but more complicated
 - known as "bundle adjustment"

Full-view Panorama

Texture Mapped Model

Global alignment

- Register *all* pairwise overlapping images
- Use a 3D rotation model (one R per image)
- Use direct alignment (patch centers) or feature based
- *Infer* overlaps based on previous matches (incremental)
- Optionally *discover* which images overlap other images using feature selection (RANSAC)

Recognizing Panoramas

[Brown & Lowe, ICCV'03]

Fully automated 2D stitching Richard Szeliski

- Free copy from Microsoft Essentials
 - <u>http://windows.microsoft.com/en-us/windows-live/photo-gallery-get-started</u>

Final thought: What is a "panorama"?

- Tracking a subject
 - Panorama
- Repeated (best) shots
 Photo Fuse
- Multiple exposures
 Photo Fuse

• "Infer" what photographer wants?

Image Stitching

Richard Szeliski