EE795: Computer Vision and Intelligent Systems

Spring 2012
TTh 17:30-18:45 FDH 204

Lecture 14
130307

http://www.ee.unlv.edu/~b1morris/ecg795/
Outline

- Review
 - Stereo
- Dense Motion Estimation
- Translational Alignment
- Optical Flow
Stereo Matching

- Given two more images of the same scene or object, compute a representation of its shape

- Common application is generating disparity or depth map
 - Popularized for games recently by Kinect

- What are applications?
Stereo Matching

• Given two or more images of the same scene or object, compute a representation of its shape

• What are some possible representations?
 ▫ depth maps
 ▫ volumetric models
 ▫ 3D surface models
 ▫ planar (or offset) layers
Stereo Matching

What are some possible algorithms?

- match “features” and interpolate
- match edges and interpolate
- match all pixels with windows (coarse-fine)
- use optimization:
 - iterative updating
 - dynamic programming
 - energy minimization (regularization, stochastic)
 - graph algorithms
Stereo: epipolar geometry

- Match features along epipolar lines

- **Rectification**: warping the input images (perspective transformation) so that epipolar lines are horizontal
Rectification

- Project each image onto same plane, which is parallel to the epipole
- Resample lines (and shear/stretch) to place lines in correspondence, and minimize distortion

[Loop and Zhang, CVPR’99]
Rectification

(a) Original image pair overlayed with several epipolar lines.

(b) Image pair transformed by the specialized projective mapping H_p and H'_p. Note that the epipolar lines are now parallel to each other in each image.

(c) Image pair transformed by the similarity H_s and H'_s. Note that the image pair is now rectified (the epipolar lines are horizontally aligned).

(d) Final image rectification after shearing transform H_r and H'_r. Note that the image pair remains rectified, but the horizontal distortion is reduced.

BAD!

GOOD!
Finding correspondences

- apply feature matching criterion (e.g., correlation or Lucas-Kanade) at all pixels simultaneously
- search only over epipolar lines (many fewer candidate positions)
Your basic stereo algorithm

For each epipolar line
 For each pixel in the left image
 • compare with every pixel on same epipolar line in right image
 • pick pixel with minimum match cost

Improvement: match windows
• This should look familiar...
Image registration (revisited)

- How do we determine correspondences?
 - **block matching** or **SSD** (sum squared differences)

 \[E(x, y; d) = \sum_{(x', y') \in N(x, y)} [I_L(x' + d, y') - I_R(x', y')]^2 \]

 - \(d\) is the **disparity** (horizontal motion)

- How big should the neighborhood be?
Neighborhood size

- Smaller neighborhood: more details
- Larger neighborhood: fewer isolated mistakes

- \(w = 3 \)
- \(w = 20 \)
Traditional Stereo Matching

- **Advantages:**
 - gives detailed surface estimates
 - fast algorithms based on moving averages
 - sub-pixel disparity estimates and confidence

- **Limitations:**
 - narrow baseline \Rightarrow noisy estimates
 - fails in textureless areas
 - gets confused near occlusion boundaries
Feature-based stereo

- Match “corner” (interest) points

- Interpolate complete solution
Data interpolation

• Given a sparse set of 3D points, how do we *interpolate* to a full 3D surface?
• Scattered data interpolation [Nielson93]
• triangulate
• put onto a grid and fill (use pyramid?)
• place a *kernel function* over each data point
• minimize an energy function

• Lots of more advanced stereo matching options and algorithms exist
Depth Map Results

- Input image
- Mean field
- Sum Abs Diff
- Graph cuts
Dense Motion Estimation

- Motion is extremely important in vision
- Biologically: motion indicates what is food and when to run away
 - We have evolved to be very sensitive to motion cues (peripheral vision)
- Alignment of images and motion estimation is widely used in computer vision
 - Optical flow
 - Motion compensation for video compression
 - Image stabilization
 - Video summarization
Biological Motion

- Even limited motion information is perceptually meaningful

- http://www.biomotionlab.ca/Demos/BMLwalker.html
Translational Alignment

- Motion estimation between images requires an error metric for comparison.
- Sum of squared differences (SSD)
 \[E_{SSD}(u) = \sum_i [I_1(x_i + u) - I_0(x_i)]^2 = \sum_i e_i^2 \]
 - \(u = (u, v) \) – is a displacement vector (can be subpixel)
 - \(e_i \) - residual error
- Brightness constancy constraint
 - Assumption that corresponding pixels will retain the same value in two images.
 - Objects tend to maintain the perceived brightness under varying illumination conditions [Horn 1974]
- Color images processed by channels and summed or converted to colorspace that considers only luminance
SSD Improvements

• As we have seen many times in class, SSD is the simplest approach and can be improved
• Robust error metrics
 ▫ L_1 norm (sum absolute differences)
 • Better outlier resilience
• Spatially varying weights
 ▫ Weighted SSD to weight contribution of each pixel during matching
 • Ignore certain parts of the image (e.g. foreground), down-weight objects during images stabilization
• Bias and gain
 ▫ Normalize exposure between images
 • Address brightness constancy
Correlation

- Instead of minimizing pixel differences, maximize correlation
- Normalized cross-correlation

\[E_{NCC}(u) = \frac{\sum_i [I_0(x_i) - \bar{I}_0] [I_1(x_i + u) - \bar{I}_1]}{\sqrt{\sum_i [I_0(x_i) - \bar{I}_0]^2} \sqrt{\sum_i [I_1(x_i + u) - \bar{I}_1]^2}} , \]

\[\bar{I}_0 = \frac{1}{N} \sum_i I_0(x_i) \quad \text{and} \]
\[\bar{I}_1 = \frac{1}{N} \sum_i I_1(x_i + u) \]

- Normalize by the patch intensities
- Value is between \([-1, 1]\) which makes it easy to use results (e.g. threshold to find matching pixels)
Optical flow
Problem definition: optical flow

- How to estimate pixel motion from image H to image I?
 - Solve pixel correspondence problem
 - given a pixel in H, look for nearby pixels of the same color in I

Key assumptions
- **color constancy**: a point in H looks the same in I
 - For grayscale images, this is **brightness constancy**
- **small motion**: points do not move very far

This is called the **optical flow** problem
Optical flow constraints (grayscale images)

\[H(x, y) \]

- Let’s look at these constraints more closely
 - brightness constancy: Q: what’s the equation?
 \[H(x, y) = I(x + u, y + v) \]
 - small motion: (u and v are less than 1 pixel)
 - suppose we take the Taylor series expansion of I:
 \[
 I(x + u, y + v) = I(x, y) + \frac{\partial I}{\partial x} u + \frac{\partial I}{\partial y} v + \text{higher order terms}
 \approx I(x, y) + \frac{\partial I}{\partial x} u + \frac{\partial I}{\partial y} v
 \]
Optical flow equation

- Combining these two equations

\[0 = I(x + u, y + v) - H(x, y) \]
\[\approx I(x, y) + I_x u + I_y v - H(x, y) \]
\[\approx (I(x, y) - H(x, y)) + I_x u + I_y v \]
\[\approx I_t + I_x u + I_y v \]
\[\approx I_t + \nabla I \cdot [u \ v] \]

In the limit as \(u \) and \(v \) go to zero, this becomes exact

\[0 = I_t + \nabla I \cdot \left[\frac{\partial x}{\partial t} \quad \frac{\partial y}{\partial t} \right] \]
Optical flow equation

\[0 = I_t + \nabla I \cdot [u \ v] \]

- Q: how many unknowns and equations per pixel?
 - \(u \) and \(v \) are unknown, 1 equation

Intuitively, what does this constraint mean?

- The component of the flow in the gradient direction is determined
- The component of the flow parallel to an edge is unknown

This explains the Barber Pole illusion

http://www.sandlotscience.com/Ambiguous/Barberpole_Illusion.htm
Aperture problem
Aperture problem
Solving the aperture problem

• Basic idea: assume motion field is smooth

• Horn & Schunk: add smoothness term
 \[\int \int (I_t + \nabla I \cdot [u \ v])^2 + \lambda^2 (|\nabla u|^2 + |\nabla v|^2) \ dx \ dy \]

• Lucas & Kanade: assume locally constant motion
 ▫ pretend the pixel’s neighbors have the same (u,v)

• Many other methods exist. Here’s an overview:
 ▫ http://vision.middlebury.edu/flow/
Lucas-Kanade flow

- How to get more equations for a pixel?
 - Basic idea: impose additional constraints
 - most common is to assume that the flow field is smooth locally
 - one method: pretend the pixel’s neighbors have the same (u,v)
 - If we use a 5x5 window, that gives us 25 equations per pixel!

\[
0 = I_t(p_i) + \nabla I(p_i) \cdot [u \ v]
\]

\[
\begin{bmatrix}
I_x(p_1) & I_y(p_1) \\
I_x(p_2) & I_y(p_2) \\
\vdots & \vdots \\
I_x(p_{25}) & I_y(p_{25}) \\
\end{bmatrix}
\begin{bmatrix}
u \\
v \\
\end{bmatrix}
=
\begin{bmatrix}
I_t(p_1) \\
I_t(p_2) \\
\vdots \\
I_t(p_{25}) \\
\end{bmatrix}
\]

\[
A = 25 \times 2 \\
d = 2 \times 1 \\
b = 25 \times 1
\]
RGB version

- **How to get more equations for a pixel?**
 - **Basic idea:** impose additional constraints
 - most common is to assume that the flow field is smooth locally
 - one method: pretend the pixel’s neighbors have the same (u,v)
 - If we use a 5x5 window, that gives us 25*3 equations per pixel!

\[
0 = I_t(p_i)[0, 1, 2] + \nabla I(p_i)[0, 1, 2] \cdot [u \ v]
\]

\[
\begin{bmatrix}
I_x(p_1)[0] & I_y(p_1)[0] \\
I_x(p_1)[1] & I_y(p_1)[1] \\
I_x(p_1)[2] & I_y(p_1)[2] \\
\vdots & \vdots \\
I_x(p_{25})[0] & I_y(p_{25})[0] \\
I_x(p_{25})[1] & I_y(p_{25})[1] \\
I_x(p_{25})[2] & I_y(p_{25})[2]
\end{bmatrix}
\begin{bmatrix}
u \\
v
\end{bmatrix}
= -
\begin{bmatrix}
I_t(p_1)[0] \\
I_t(p_1)[1] \\
I_t(p_1)[2] \\
\vdots \\
I_t(p_{25})[0] \\
I_t(p_{25})[1] \\
I_t(p_{25})[2]
\end{bmatrix}
\]

\[
A_{75\times2} \quad d_{2\times1} \quad b_{75\times1}
\]
Lucas-Kanade flow

Prob: we have more equations than unknowns
\[A \begin{bmatrix} d \end{bmatrix} = \begin{bmatrix} b \end{bmatrix} \quad \text{25x2 2x1 25x1} \]

\[\text{minimize } \|Ad - b\|^2 \]

Solution: solve least squares problem
- minimum least squares solution given by solution (in d) of:
\[(A^T A) \begin{bmatrix} d \end{bmatrix} = A^T b \quad \text{2x2 2x1 2x1} \]

\[
\begin{bmatrix}
\sum I_x I_x & \sum I_x I_y \\
\sum I_x I_y & \sum I_y I_y
\end{bmatrix}
\begin{bmatrix}
 u \\
 v
\end{bmatrix}
= -
\begin{bmatrix}
 \sum I_x I_t \\
 \sum I_y I_t
\end{bmatrix}
\]

\[A^T A \quad A^T b \]

- The summations are over all pixels in the K x K window
- This technique was first proposed by Lucas & Kanade (1981)
Conditions for solvability

• Optimal \((u, v)\) satisfies Lucas-Kanade equation

\[
\begin{bmatrix}
\sum I_x I_x & \sum I_x I_y \\
\sum I_x I_y & \sum I_y I_y
\end{bmatrix}
\begin{bmatrix}
u \\
v
\end{bmatrix}
= -
\begin{bmatrix}
\sum I_x I_t \\
\sum I_y I_t
\end{bmatrix}
\]

\[\begin{align*}
A^T A \\
A^T b
\end{align*}\]

• When is This Solvable?
 • \(A^T A\) should be invertible
 • \(A^T A\) should not be too small due to noise
 – eigenvalues \(\lambda_1\) and \(\lambda_2\) of \(A^T A\) should not be too small
 • \(A^T A\) should be well-conditioned
 – \(\lambda_1 / \lambda_2\) should not be too large (\(\lambda_1 = \) larger eigenvalue)

• Does this look familiar?
 • \(A^T A\) is the Harris matrix
Observation

- This is a two image problem BUT
 - Can measure sensitivity by just looking at one of the images!
 - This tells us which pixels are easy to track, which are hard
 - very useful for feature tracking...
Errors in Lucas-Kanade

- What are the potential causes of errors in this procedure?
 - Suppose A^TA is easily invertible
 - Suppose there is not much noise in the image

- When our assumptions are violated
 - Brightness constancy is not satisfied
 - The motion is not small
 - A point does not move like its neighbors
 - window size is too large
 - what is the ideal window size?
Improving accuracy

- Recall our small motion assumption
 \[0 = I(x + u, y + v) - H(x, y) \]
 \[\approx I(x, y) + I_xu + I_yv - H(x, y) \]

- Not exact, need higher order terms to do better
 \[= I(x, y) + I_xu + I_yv + \text{higher order terms} - H(x, y) \]

- Results in polynomial root finding problem
 - Can be solved using Newton’s method
 - Also known as Newton-Raphson
 - Lucas-Kanade method does a single iteration of Newton’s method
 - Better results are obtained with more iterations

1D case on board
Iterative Refinement

Iterative Lucas-Kanade Algorithm

1. Estimate velocity at each pixel by solving Lucas-Kanade equations
2. Warp H towards I using the estimated flow field
 - *use image warping techniques*
3. Repeat until convergence
Revisiting the small motion assumption

- Is this motion small enough?
 - Probably not—it’s much larger than one pixel (2^{nd} order terms dominate)
 - How might we solve this problem?
Reduce the resolution!
Coarse-to-fine optical flow estimation
Coarse-to-fine optical flow estimation

Gaussian pyramid of image H

run iterative L-K

warp & upsample

run iterative L-K

:

Gaussian pyramid of image I

image H

image I
Optical flow result

Dewey morph
Robust methods

- L-K minimizes a sum-of-squares error metric
 - least squares techniques overly sensitive to outliers

Error metrics

- **quadratic**: $\rho(x) = x^2$
- **truncated quadratic**:
 \[
 \rho_{\alpha, \lambda}(x) = \begin{cases}
 \lambda x^2 / \alpha & \text{if } |x| < \sqrt{\alpha / \lambda} \\
 \alpha & \text{otherwise}
 \end{cases}
 \]
- **lorentzian**:
 \[
 \rho_\sigma(x) = \log \left(1 + \frac{1}{2} \left(\frac{x}{\sigma} \right)^2 \right)
 \]
Robust optical flow

- Robust Horn & Schunk
 \[\int \int \rho(I_t + \nabla I \cdot [u \ v]) + \lambda^2 \rho(||\nabla u||^2 + ||\nabla v||^2) \, dx \, dy \]

- Robust Lucas-Kanade
 \[\sum_{(x,y) \in W} \rho(I_t + \nabla I \cdot [u \ v]) \]

Benchmarking optical flow algorithms

- Middlebury flow page
 - http://vision.middlebury.edu/flow/
Discussion: features vs. flow?

• Features are better for:

• Flow is better for:
Advanced topics

• Particles: combining features and flow
 ▫ Peter Sand et al.
 ▫ http://rvsn.csail.mit.edu/pv/

• State-of-the-art feature tracking/SLAM
 ▫ Georg Klein et al.
 ▫ http://www.robots.ox.ac.uk/~gk/