Outline

• Review
 ▫ Optical Flow
• Background Subtraction
Motion estimation

- Input: sequence of images
- Output: point correspondence

- Feature correspondence: “Feature Tracking”
 - we’ve seen this already (e.g., SIFT)
 - can modify this to be more accurate/efficient if the images are in sequence (e.g., video)

- Pixel (dense) correspondence: “Optical Flow”
Problem definition: optical flow

- How to estimate pixel motion from image H to image I?
 - Solve pixel correspondence problem
 - given a pixel in H, look for nearby pixels of the same color in I

Key assumptions

- **color constancy**: a point in H looks the same in I
 - For grayscale images, this is *brightness constancy*
- **small motion**: points do not move very far

This is called the optical flow problem
Optical flow constraints (grayscale images)

- Let’s look at these constraints more closely
 - brightness constancy: Q: what’s the equation?
 - \(H(x, y) = I(x + u, y + v) \)
 - small motion: (u and v are less than 1 pixel)
 - suppose we take the Taylor series expansion of I:
 \[
 I(x + u, y + v) = I(x, y) + \frac{\partial I}{\partial x} u + \frac{\partial I}{\partial y} v + \text{higher order terms}
 \approx I(x, y) + \frac{\partial I}{\partial x} u + \frac{\partial I}{\partial y} v
 \]
Optical flow equation

- Combining these two equations

\[0 = I(x + u, y + v) - H(x, y) \]
\[\approx I(x, y) + I_x u + I_y v - H(x, y) \]
\[\approx (I(x, y) - H(x, y)) + I_x u + I_y v \]
\[\approx I_t + I_x u + I_y v \]
\[\approx I_t + \nabla I \cdot [u \ v] \]

In the limit as \(u \) and \(v \) go to zero, this becomes exact

\[0 = I_t + \nabla I \cdot \left[\frac{\partial x}{\partial t} \quad \frac{\partial y}{\partial t} \right] \]
Lucas-Kanade flow

- How to get more equations for a pixel?
 - Basic idea: impose additional constraints
 - most common is to assume that the flow field is smooth locally
 - one method: pretend the pixel’s neighbors have the same (u,v)
 - If we use a 5x5 window, that gives us 25 equations per pixel!

\[0 = I_t(p_i) + \nabla I(p_i) \cdot [u \ v] \]

\[
\begin{bmatrix}
I_x(p_1) & I_y(p_1) \\
I_x(p_2) & I_y(p_2) \\
\vdots & \vdots \\
I_x(p_{25}) & I_y(p_{25})
\end{bmatrix}
\begin{bmatrix}
u \\
v
\end{bmatrix}
= -
\begin{bmatrix}
I_t(p_1) \\
I_t(p_2) \\
\vdots \\
I_t(p_{25})
\end{bmatrix}
\]

\[
A \quad \text{25x2} \quad d \quad \text{2x1} \quad b \quad \text{25x1}
\]
Conditions for solvability

• Optimal \((u, v)\) satisfies Lucas-Kanade equation

\[
\begin{bmatrix}
\sum I_x I_x & \sum I_x I_y \\
\sum I_x I_y & \sum I_y I_y
\end{bmatrix}
\begin{bmatrix}
u \\
v
\end{bmatrix}
= -
\begin{bmatrix}
\sum I_x I_t \\
\sum I_y I_t
\end{bmatrix}
\]

\[A^T A \quad A^T b\]

• When is This Solvable?
 • \(A^T A\) should be invertible
 • \(A^T A\) should not be too small due to noise
 – eigenvalues \(\lambda_1\) and \(\lambda_2\) of \(A^T A\) should not be too small
 • \(A^T A\) should be well-conditioned
 – \(\lambda_1 / \lambda_2\) should not be too large (\(\lambda_1 = \) larger eigenvalue)

• Does this look familiar?
 • \(A^T A\) is the Harris matrix
Background Subtraction

• Motion is an important
 ▫ Indicates an object of interest

• Background subtraction
 ▫ Given an image (usually a video frame), identify the foreground objects in that image
 • Assume that foreground objects are moving
 • Typically, moving objects more interesting than the scene
 • Simplifies processing – less processing cost and less room for error
Background Subtraction Example

- Often used in traffic monitoring applications
 - Vehicles are objects of interest (counting vehicles)
- Human action recognition (run, walk, jump, ...)
- Human-computer interaction (“human as interface”)
- Object tracking
Requirements

• A reliable and robust background subtraction algorithm should handle:
 ▫ Sudden or gradual illumination changes
 • Light turning on/off, cast shadows through a day
 ▫ High frequency, repetitive motion in the background
 • Tree leaves blowing in the wind, flag, etc.
 ▫ Long-term scene changes
 • A car parks in a parking spot
Basic Approach

• Estimate the background at time t
• Subtract the estimated background from the current input frame
• Apply a threshold, Th, to the absolute difference to get the foreground mask.
 - $I(x, y, t) - B(x, y, t) > Th = F(x, y, t)$

How can we estimate the background?
Frame Differencing

- Background is estimated to be the previous frame
 \[B(x, y, t) = I(x, y, t - 1) \]
- Depending on the object structure, speed, frame rate, and global threshold, may or may not be useful
 - Usually not useful – generates impartial objects and ghosts

![Diagram showing incomplete object and ghosts](image)
Frame Differencing Example

$Th = 25$

$Th = 50$

$Th = 100$

$Th = 200$
Mean Filter

- Background is the mean of the previous N frames
 - $B(x, y, t) = \frac{1}{N} \sum_{i=0}^{N-1} I(x, y, t - i)$
 - Produces a background that is a temporal smoothing or “blur”
- $N = 10$
Mean Filter

- $N = 20$

- $N = 50$
Median Filter

- Assume the background is more likely to appear than foreground objects
 - \(B(x, y, t) = \text{median}(I(x, y, t - i)), \; i \in \{0, N - 1\} \)

- \(N = 10 \)
Median Filter

- $N = 20$

 ![Estimated Background](image1)
 ![Foreground Mask](image2)

- $N = 50$

 ![Estimated Background](image3)
 ![Foreground Mask](image4)
Frame Difference Advantages

- Extremely easy to implement and use
- All the described variants are pretty fast
- The background models are not constant
 - Background changes over time
Frame Differencing Shortcomings

• Accuracy depends on object speed/frame rate
• Mean and median require large memory
 ▫ Can use a running average
 ▫ $B(x, y, t) = (1 - \alpha)B(x, y, t - 1) + \alpha I(x, y, t)$
 • α – is the learning rate
• Use of a global threshold
 ▫ Same for all pixels and does not change with time
 ▫ Will give poor results when the:
 • Background is bimodal
 • Scene has many slow moving objects (mean, median)
 • Objects are fast and low frame rate (frame diff)
 • Lighting conditions change with time
Improving Background Subtraction

- Adaptive Background Mixture Models for Real-Time Tracking
 - Chris Stauffer and W.E.L. Grimson

- The paper on background subtraction
 - Over 4000 citations since 1999
Motivation

- Robust background subtraction should handle lighting changes, repetitive motion from clutter and long term scene changes

RG plots of a single pixel

Differing threshold over time

Bimodal distribution over time
Algorithm Overview

- Pixel value is modeled as a mixture of adaptive Gaussian distributions
 - **Why a mixture?**
 - Multiple surfaces appear in a pixel (mean background assumes a single pixel distribution)
 - **Why adaptive?**
 - Lighting conditions change
- Gaussians are evaluated to determine which ones are most likely to correspond to the background
- Pixels that do not match the background Gaussians are classified as foreground
Gaussian (Normal) Distribution

- **Univariate**

\[\mathcal{N}(x|\mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \]

- **Multivariate**

\[\mathcal{N}(x|\mu, \Sigma) = \frac{1}{(2\pi)^{D/2} |\Sigma|^{1/2}} e^{-\frac{1}{2}(x-\mu)^T \Sigma^{-1} (x-\mu)} \]
Online Mixture Model

- History of a pixel is known up to current time t
 - $\{X_1, \ldots, X_t\} = \{I(x_o, y_o, i): 1 \leq i \leq t\}$
- Model the history as a mixture of K Gaussian Distributions
 - $P(X_t) = \sum_{i=1}^{K} w_{i,t} \mathcal{N}(X_t | u_{i,t}, \Sigma_{i,t})$
 - $w_{i,t}$ - prior probability (weight) of Gaussians i
- What is the dimensionality of the Gaussian?
Mixture Model Example

- For a grayscale image with $K = 5$
Model Adaption

- Online K-means approximation is used to update the Gaussians
- Match a new pixel X_{t+1} to an existing Gaussian and update
 - Must be within 2.5σ
 - $\mu_{i,t+1} = (1 - \rho)\mu_{i,t} + \rho X_{t+1}$
 - $\sigma^2_{i,t+1} = (1 - \rho)\sigma^2_{i,t} + \rho(X_{t+1} - \mu_{i,t})^2$
 - $\rho = \alpha \mathcal{N}(X_{t+1}|\mu_{i,t}, \sigma^2_{i,t})$
 - α – is a learning rate
- Prior weights of Gaussians are updated
 - $w_{i,t+1} = (1 - \alpha)w_{i,t} + \alpha(M_{i,t+1})$
 - $M_{i,t+1} = 1$ for matching Guassian or $M_{i,t+1} = 0$ for all others
Model Adaption

- If X_{t+1} do not match and of the K Gaussians, there is no matching mixture
- Replace the least probable distribution with a new one
 - Least probable in the ω/σ sense (to be explained)
 - The newly created distribution has
 - $\mu_{t+1} = X_{t+1}$
 - Has high variance and low prior weight
Background Model Estimation

- **Heuristic**: Gaussians with the most **supporting evidence** and **least variance** should correspond to the background
 - **Why?**
- Gaussians are ordered by the value of ω/σ
 - High support and smaller variance give larger value
- **First B distributions** are selected as the background model
 - $B = \arg \min_b (\sum_{i=1}^{b} w_i > T)$
 - T minimum portion of image expected to be background
Background Estimation Example

- After background estimation, red are the background and black are foreground
Discussion

• Advantages
 ▫ Different threshold for each pixel
 ▫ Pixel-wise thresholds adapt over time
 ▫ Objects are allowed to become part of the background without destroying the existing background model
 ▫ Provides fast recovery

• Disadvantages
 ▫ Cannot handle sudden, drastic lighting changes
 ▫ Must have good Gaussian initialization (median filtering)
 ▫ There are a number of parameters to tune
More Issues?

- Shadows detection
 - [Prati, Mikic, Trivedi, Cucchiara 2003]

- Chen & Aggarwal: The likelihood of a pixel being covered or uncovered is decided by the relative coordinates of optical flow vector vertices in its neighborhood.

- Oliver et al.: “Eigenbackgrounds" and its variations.

- Seki et al.: Image variations at neighboring image blocks have strong correlation.
Simple Improvement

- Adaptive background mixture model + 3D connected component analysis [Goo et al.]
 - 3rd dimension is time
- Incorporate both spatial and temporal information into the background model
Summary

- Simple background subtraction approaches such as fame diff, mean, and median filtering are fast
 - Constant thresholds make them ill-suited for challenging real-world problems
- Adaptive background mixture model approach can handle challenging situations
 - Bimodal backgrounds, long-term scene changes, and repetitive motion
- Improvements include upgrade the approach with temporal information or using region-based techniques