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Outline 

• Review 

▫ Background Subtraction 

▫ Stauffer and Grimson 

• Object Recognition Intro  
(Chapter 14) 

 

 

• Excellent References 
▫ http://people.csail.mit.edu/torralba/shortCourseRLOC/index.html 

▫ http://web.eecs.umich.edu/~silvio/teaching/lectures/lecture19.pdf 
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Background Subtraction 

• Motion is an important 

▫ Indicates an object of interest 

 

• Background subtraction 

▫ Given an image (usually a video frame), identify 
the foreground objects in that image 

 Assume that foreground objects are moving 

 Typically, moving objects more interesting than the 
scene 

 Simplifies processing – less processing cost and less 
room for error 
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Requirements 

• A reliable and robust background subtraction 
algorithm should handle: 

▫ Sudden or gradual illumination changes 

 Light turning on/off, cast shadows through a day 

▫ High frequency, repetitive motion in the 
background 

 Tree leaves blowing in the wind, flag, etc. 

▫ Long-term scene changes 

 A car parks in a parking spot 
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Basic Approach 

• Estimate the background at time 𝑡 

• Subtract the estimated background from the 
current input frame 

• Apply a threshold, 𝑇ℎ, to the absolute difference 
to get the foreground mask. 

▫ 𝐼 𝑥, 𝑦, 𝑡 − 𝐵(𝑥, 𝑦, 𝑡)| > 𝑇ℎ = 𝐹(𝑥, 𝑦, 𝑡) 
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                                  −                                      > 𝑇ℎ =  

𝐼(𝑥, 𝑦, 𝑡) 𝐵(𝑥, 𝑦, 𝑡) 𝐹(𝑥, 𝑦, 𝑡) 

How can we estimate the background? 



Frame Differencing 

• Background is estimated to be the previous 
frame 

▫ 𝐵 𝑥, 𝑦, 𝑡 = 𝐼(𝑥, 𝑦, 𝑡 − 1) 

• Depending on the object structure, speed, frame 
rate, and global threshold, may or may not be 
useful 

▫ Usually not useful – generates impartial objects 
and ghosts 
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Frame Differencing Example 
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Mean Filter 

• Background is the mean of the previous 𝑁 
frames 

▫ 𝐵 𝑥, 𝑦, 𝑡 =
1

𝑁
 𝐼(𝑥, 𝑦, 𝑡 − 𝑖)𝑁−1
𝑖=0  

▫ Produces a background that is a temporal 
smoothing or “blur” 

• 𝑁 = 10 
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Mean Filter 

• 𝑁 = 20 

 

 

 

 

 

• 𝑁 = 50 
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Median Filter 

• Assume the background is more likely to appear 
than foreground objects 

▫ 𝐵 𝑥, 𝑦, 𝑡 = 𝑚𝑒𝑑𝑖𝑎𝑛 𝐼 𝑥, 𝑦, 𝑡 − 𝑖 , 𝑖 ∈ {0, 𝑁 − 1} 

 
• 𝑁 = 10 
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Median Filter 

• 𝑁 = 20 

 

 

 

 

 

• 𝑁 = 50 
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Frame Difference Advantages 

• Extremely easy to implement and use 

• All the described variants are pretty fast 

• The background models are not constant 

▫ Background changes over time 
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Frame Differencing Shortcomings 

• Accuracy depends on object speed/frame rate 
• Mean and median require large memory 

▫ Can use a running average 

▫ 𝐵 𝑥, 𝑦, 𝑡 = 1 − 𝛼 𝐵 𝑥, 𝑦, 𝑡 − 1 + 𝛼𝐼 𝑥, 𝑦, 𝑡  
 𝛼 – is the learning rate 

• Use of a global threshold 
▫ Same for all pixels and does not change with time 
▫ Will give poor results when the: 

 Background is bimodal  
 Scene has many slow moving objects (mean, 

median) 
 Objects are fast and low frame rate (frame diff) 
 Lighting conditions change with time 
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Improving Background Subtraction 

• Adaptive Background Mixture Models for Real-
Time Tracking  

▫ Chris Stauffer and W.E.L. Grimson 

 

• The paper on background subtraction 

▫ Over 4000 citations since 1999 
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Motivation 

• Robust background subtraction should handle 
lighting changes, repetitive motion from clutter 
and long term scene changes 
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RG plots of a 
single pixel 

Differing threshold 
over time 

Bimodal distribution 
over time 



Algorithm Overview 

• Pixel value is modeled as a mixture of adaptive 
Gaussian distributions  
▫ Why a mixture? 

 Multiple surfaces appear in a pixel (mean 
background assumes a single pixel distribution) 

▫ Why adaptive? 
 Lighting conditions change 

• Gaussians are evaluated to determine which 
ones are most likely to correspond to the 
background 

• Pixels that do not match the background 
Gaussians are classified as foreground 

16 



Online Mixture Model 

• History of a pixel is known up to current time 𝑡 
▫ 𝑋1, … , 𝑋𝑡 = 𝐼 𝑥𝑜, 𝑦𝑜, 𝑖 : 1 ≤ 𝑖 ≤ 𝑡  

• Model the history as a mixture of 𝐾 Gaussian 
Distributions 

▫ 𝑃 𝑋𝑡 =  𝑤𝑖,𝑡𝒩(𝑋𝑡|𝑢𝑖,𝑡 , Σ𝑖,𝑡)
𝐾
𝑖=1   

 𝑤𝑖,𝑡 - prior probability (weight) of Gaussian 𝑖  

 

▫ For a grayscale  
image with 𝐾 = 5 
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Model Adaption 
• Online K-means approximation is used to update 

the Gaussians 
• Match a new pixel 𝑋𝑡+1 to an existing Gaussian and 

update 
▫ Must be within 2.5𝜎 

▫ 𝜇𝑖,𝑡+1 = 1 − 𝜌 𝜇𝑖,𝑡 + 𝜌𝑋𝑡+1 

▫ 𝜎𝑖,𝑡+1
2 = 1 − 𝜌 𝜎𝑖,𝑡

2 + 𝜌 𝑋𝑡+1 − 𝜇𝑖,𝑡
2
 

 𝜌 = 𝛼𝒩 Xt+1 𝜇𝑖,𝑡 , 𝜎𝑖,𝑡
2  

 𝛼 – is a learning rate 

• Prior weights of Gaussians are updated 

▫ 𝑤𝑖,𝑡+1 = 1 − 𝛼 𝑤𝑖,𝑡 + 𝛼 𝑀𝑖,𝑡+1  
▫ 𝑀𝑖,𝑡+1 = 1 for matching Guassian or 𝑀𝑖,𝑡+1 = 0 for all 

others  
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Model Adaption 

• If 𝑋𝑡+1 do not match and of the 𝐾 Gaussians, 
there is no matching mixture 

• Replace the least probable distribution with a 
new one 

▫ Least probable in the 𝜔/𝜎 sense (to be explained) 

▫ The newly created distribution has 

 𝜇𝑡+1 = 𝑋𝑡+1 

 Has high variance and low prior weight 
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Background Model Estimation 

• Heuristic: Gaussians with the most supporting 
evidence and least variance should 
correspond to the background 
▫ Why? 

• Gaussians are ordered by the value of 𝜔/𝜎  
▫ High support and smaller variance give larger 

value 

• First 𝐵 distributions are selected as the 
background model 

▫ 𝐵 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑏( 𝑤𝑖 > 𝑇)
𝑏
𝑖=1  

 𝑇 minimum portion of image expected to be 
background 
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Background Estimation Example 

• After background estimation, red are the 
background and black are foreground 
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Discussion 

• Advantages 
▫ Different threshold for each pixel 
▫ Pixel-wise thresholds adapt over time 
▫ Objects are allowed to become part of the 

background without destroying the existing 
background model 

▫ Provides fast recovery 

• Disadvantages 
▫ Cannot handle sudden, drastic lighting changes 
▫ Must have good Gaussian initialization (median 

filtering) 
▫ There are a number of parameters to tune 
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More Issues? 

• Shadows detection  
▫ [Prati, Mikic, Trivedi, Cucchiara 2003] 

 
 
 

 
• Chen & Aggarwal: The likelihood of a pixel being 

covered or uncovered is decided by the relative 
coordinates of optical flow vector vertices in its 
neighborhood. 

• Oliver et al.: “Eigenbackgrounds" and its variations. 
• Seki et al.: Image variations at neighboring image 

blocks have strong correlation. 
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Simple Improvement 

• Adaptive background mixture model + 3D 
connected component analysis [Goo et al.] 

▫ 3rd dimension is time 

• Incorporate both spatial and temporal 
information into the background model 
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Summary 

• Simple background subtraction approaches such 
as fame diff, mean, and median filtering are fast 

▫ Constant thresholds make them ill-suited for 
challenging real-world problems 

• Adaptive background mixture model approach 
can handle challenging situations 

▫ Bimodal backgrounds, long-term scene changes, 
and repetitive motion 

• Improvements include upgrade the approach 
with temporal information or using region-
based techniques 
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Object Recognition Introduction 

 

26 

The “Margaret Thatcher Illusion”, by Peter Thompson 

Steve  Seitz 



Object Recognition Introduction 
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The “Margaret Thatcher Illusion”, by Peter Thompson 
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What do we mean by “object recognition”? 

Next 15 slides adapted from  

Li, Fergus, & Torralba’s 

excellent short course on 

category and object 

recognition 
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Verification: is that a lamp? 
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Detection: are there people? 
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Identification: is that Potala Palace? 
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Object categorization 

mountain 

building 

tree 

banner 

vendor 

people 

street lamp 
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Scene and context categorization 

• outdoor 

• city 

• … 
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Object recognition 
Is it really so hard? 

This is a chair 

Find the chair in this image  Output of normalized correlation 
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Object recognition 
Is it really so hard? 

Find the chair in this image  

Pretty much garbage 
Simple template matching is not going to make it 
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Object recognition 
Is it really so hard? 

Find the chair in this image  

A “popular method is that of template matching, by point to point correlation of a model 
pattern with the image pattern. These techniques are inadequate for three-dimensional 
scene analysis for many reasons, such as occlusion, changes in viewing angle, and 
articulation of parts.” Nivatia & Binford, 1977. 36 



Why not use SIFT matching for 
everything? 

• Works well for object instances 

 

 

 

• Not great for generic object categories 
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Applications:  Computational photography 
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Applications:  Assisted driving 

meters 

m
e

te
rs

 Ped 

Ped 

Car 

Lane detection 

Pedestrian and car detection 

• Collision warning 

systems with adaptive 

cruise control,  

• Lane departure warning 

systems,  

• Rear object detection 

systems,  
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Applications:  image search 
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http://similar-images.googlelabs.com/


Challenges: viewpoint variation 

Michelangelo 1475-1564 
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slide credit: S. Ullman 

Challenges: illumination variation 
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Magritte, 1957  

Challenges: occlusion 
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Challenges: scale 
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Challenges: deformation 

Xu, Beihong 1943 
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Klimt, 1913 

Challenges: background clutter 
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Challenges: intra-class variation 
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Recognition problems 

• What is it? 
▫ Object and scene recognition 

• Who is it? 
▫ Identity recognition 

• Where is it? 
▫ Object detection 

• What are they doing? 
▫ Activities 

• All of these are classification problems 
▫ Choose one class from a list of possible candidates 
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What is recognition? 

• A different taxonomy from [Csurka et al. 2006]: 

• Recognition 

▫ Where is this particular object? 

• Categorization 

▫ What kind of object(s) is(are) present? 

• Content-based image retrieval 

▫ Find me something that looks similar 

• Detection 

▫ Locate all instances of a given class 
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Face detection 

How to tell if a face is present? 
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One simple method:  skin detection 

Skin pixels have a distinctive range of colors 

• Corresponds to region(s) in RGB color space 

– for visualization, only R and G components are shown above  

skin 

Skin classifier 

• A pixel X = (R,G,B) is skin if it is in the skin region 

• But how to find this region? 
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Skin detection 

Learn the skin region from examples 

• Manually label pixels in one or more “training images” as skin or not skin 

• Plot the training data in RGB space 

– skin pixels shown in orange, non-skin pixels shown in blue 

– some skin pixels may be outside the region, non-skin pixels inside.  Why? 

Skin classifier 

• Given X = (R,G,B):  how to determine if it is skin or not? 
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Skin classification techniques 

Skin classifier 

• Given X = (R,G,B):  how to determine if it is skin or not? 

• Nearest neighbor 

– find labeled pixel closest to X 

– choose the label for that pixel 

• Data modeling 

– fit a model (curve, surface, or volume) to each class 

• Probabilistic data modeling 

– fit a probability model to each class 
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Probability 

Basic probability 

• X is a random variable 

• P(X) is the probability that X achieves a certain value 

 

 

 

 

 

 

•   

 

•                                     or  

 

 

• Conditional probability:   P(X | Y) 

– probability of X given that we already know Y 

continuous X discrete X 

called a PDF 
-probability distribution/density function 

-a 2D PDF is a surface, 3D PDF is a volume 
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Probabilistic skin classification 

Now we can model uncertainty 

• Each pixel has a probability of being skin or not skin 

–   

Skin classifier 

• Given X = (R,G,B):  how to determine if it is skin or not? 

• Choose interpretation of highest probability 

–  set X to be a skin pixel if and only if  

Where do we get                    and                        ?  
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Learning conditional PDF’s 

We can calculate P(R | skin) from a set of training images 

• It is simply a histogram over the pixels in the training images 

– each bin Ri contains the proportion of skin pixels with color Ri  

This doesn’t work as well in higher-dimensional spaces.  Why not? 

Approach:  fit parametric PDF functions  

• common choice is rotated Gaussian  

– center  

– covariance 

 

» orientation, size defined by eigenvecs, eigenvals 
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Learning conditional PDF’s 

We can calculate P(R | skin) from a set of training images 

• It is simply a histogram over the pixels in the training images 

– each bin Ri contains the proportion of skin pixels with color Ri  

But this isn’t quite what we want 

• Why not?  How to determine if a pixel is skin? 

• We want P(skin | R) not P(R | skin) 

• How can we get it? 
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Bayes rule 

In terms of our problem: 
what we measure 

(likelihood) 

domain knowledge 

(prior) 

what we want 

(posterior) 
normalization term 

The prior:  P(skin) 

• Could use domain knowledge 

– P(skin) may be larger if we know the image contains a person 

– for a portrait, P(skin) may be higher for pixels in the center 

• Could learn the prior from the training set.  How? 

– P(skin) may be proportion of skin pixels in training set 
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Bayesian estimation 

Bayesian estimation 

• Goal is to choose the label (skin or ~skin) that maximizes the posterior 

– this is called Maximum A Posteriori (MAP) estimation 

likelihood posterior (unnormalized) 

0.5 • Suppose the prior is uniform:  P(skin) = P(~skin) =  

= minimize probability of misclassification 

– in this case                                          , 

– maximizing the posterior is equivalent to maximizing the likelihood 

»                                                    if and only if   

– this is called Maximum Likelihood (ML) estimation 
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Skin detection results 
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This same procedure applies in more general circumstances 

• More than two classes 

• More than one dimension 

 

General classification 

H. Schneiderman and T.Kanade 

Example:  face detection 

• Here, X is an image region 

– dimension = # pixels  

– each face can be thought 

of as a point in a high 

dimensional space 

H. Schneiderman, T. Kanade. "A Statistical Method for 3D 

Object Detection Applied to Faces and Cars". IEEE Conference 

on Computer Vision and Pattern Recognition (CVPR 2000)  
http://www-2.cs.cmu.edu/afs/cs.cmu.edu/user/hws/www/CVPR00.pdf  
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