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Outline 

• Object Recognition Intro  
(Chapter 14) 

 

 

• Excellent References 
▫ http://people.csail.mit.edu/torralba/shortCourseRLOC/index.html 

▫ http://web.eecs.umich.edu/~silvio/teaching/lectures/lecture19.pdf 
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Object Recognition Introduction 
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The “Margaret Thatcher Illusion”, by Peter Thompson 

Steve  Seitz 



Object Recognition Introduction 
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The “Margaret Thatcher Illusion”, by Peter Thompson 
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What do we mean by “object recognition”? 

Next 15 slides adapted from  

Li, Fergus, & Torralba’s 

excellent short course on 

category and object 

recognition 
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Verification: is that a lamp? 
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Detection: are there people? 
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Identification: is that Potala Palace? 
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Object categorization 

mountain 

building 

tree 

banner 

vendor 

people 

street lamp 
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Scene and context categorization 

• outdoor 

• city 

• … 
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Object recognition 
Is it really so hard? 

This is a chair 

Find the chair in this image  Output of normalized correlation 
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Object recognition 
Is it really so hard? 

Find the chair in this image  

Pretty much garbage 
Simple template matching is not going to make it 
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Object recognition 
Is it really so hard? 

Find the chair in this image  

A “popular method is that of template matching, by point to point correlation of a model 
pattern with the image pattern. These techniques are inadequate for three-dimensional 
scene analysis for many reasons, such as occlusion, changes in viewing angle, and 
articulation of parts.” Nivatia & Binford, 1977. 13 



Why not use SIFT matching for 
everything? 

• Works well for object instances 

 

 

 

• Not great for generic object categories 
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Applications:  Computational photography 
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Applications:  Assisted driving 

meters 

m
e

te
rs

 Ped 

Ped 

Car 

Lane detection 

Pedestrian and car detection 

• Collision warning 

systems with adaptive 

cruise control,  

• Lane departure warning 

systems,  

• Rear object detection 

systems,  
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Applications:  image search 
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http://similar-images.googlelabs.com/


Challenges: viewpoint variation 

Michelangelo 1475-1564 
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slide credit: S. Ullman 

Challenges: illumination variation 
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Magritte, 1957  

Challenges: occlusion 

20 



Challenges: scale 
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Challenges: deformation 

Xu, Beihong 1943 
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Klimt, 1913 

Challenges: background clutter 
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Challenges: intra-class variation 
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Recognition problems 

• What is it? 
▫ Object and scene recognition 

• Who is it? 
▫ Identity recognition 

• Where is it? 
▫ Object detection 

• What are they doing? 
▫ Activities 

• All of these are classification problems 
▫ Choose one class from a list of possible candidates 
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What is recognition? 

• A different taxonomy from [Csurka et al. 2006]: 

• Recognition 

▫ Where is this particular object? 

• Categorization 

▫ What kind of object(s) is(are) present? 

• Content-based image retrieval 

▫ Find me something that looks similar 

• Detection 

▫ Locate all instances of a given class 
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Face detection 

How to tell if a face is present? 
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One simple method:  skin detection 

Skin pixels have a distinctive range of colors 

• Corresponds to region(s) in RGB color space 

– for visualization, only R and G components are shown above  

skin 

Skin classifier 

• A pixel X = (R,G,B) is skin if it is in the skin region 

• But how to find this region? 
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Skin detection 

Learn the skin region from examples 

• Manually label pixels in one or more “training images” as skin or not skin 

• Plot the training data in RGB space 

– skin pixels shown in orange, non-skin pixels shown in blue 

– some skin pixels may be outside the region, non-skin pixels inside.  Why? 

Skin classifier 

• Given X = (R,G,B):  how to determine if it is skin or not? 
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Skin classification techniques 

Skin classifier 

• Given X = (R,G,B):  how to determine if it is skin or not? 

• Nearest neighbor 

– find labeled pixel closest to X 

– choose the label for that pixel 

• Data modeling 

– fit a model (curve, surface, or volume) to each class 

• Probabilistic data modeling 

– fit a probability model to each class 
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Probability 

Basic probability 

• X is a random variable 

• P(X) is the probability that X achieves a certain value 

 

 

 

 

 

 

•   

 

•                                     or  

 

 

• Conditional probability:   P(X | Y) 

– probability of X given that we already know Y 

continuous X discrete X 

called a PDF 
-probability distribution/density function 

-a 2D PDF is a surface, 3D PDF is a volume 
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Probabilistic skin classification 

Now we can model uncertainty 

• Each pixel has a probability of being skin or not skin 

–   

Skin classifier 

• Given X = (R,G,B):  how to determine if it is skin or not? 

• Choose interpretation of highest probability 

–  set X to be a skin pixel if and only if  

Where do we get                    and                        ?  
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Learning conditional PDF’s 

We can calculate P(R | skin) from a set of training images 

• It is simply a histogram over the pixels in the training images 

– each bin Ri contains the proportion of skin pixels with color Ri  

This doesn’t work as well in higher-dimensional spaces.  Why not? 

Approach:  fit parametric PDF functions  

• common choice is rotated Gaussian  

– center  

– covariance 

 

» orientation, size defined by eigenvecs, eigenvals 
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Learning conditional PDF’s 

We can calculate P(R | skin) from a set of training images 

• It is simply a histogram over the pixels in the training images 

– each bin Ri contains the proportion of skin pixels with color Ri  

But this isn’t quite what we want 

• Why not?  How to determine if a pixel is skin? 

• We want P(skin | R) not P(R | skin) 

• How can we get it? 
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Bayes rule 

In terms of our problem: 
what we measure 

(likelihood) 

domain knowledge 

(prior) 

what we want 

(posterior) 
normalization term 

The prior:  P(skin) 

• Could use domain knowledge 

– P(skin) may be larger if we know the image contains a person 

– for a portrait, P(skin) may be higher for pixels in the center 

• Could learn the prior from the training set.  How? 

– P(skin) may be proportion of skin pixels in training set 
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Bayesian estimation 

Bayesian estimation 

• Goal is to choose the label (skin or ~skin) that maximizes the posterior 

– this is called Maximum A Posteriori (MAP) estimation 

likelihood posterior (unnormalized) 

0.5 • Suppose the prior is uniform:  P(skin) = P(~skin) =  

= minimize probability of misclassification 

– in this case                                          , 

– maximizing the posterior is equivalent to maximizing the likelihood 

»                                                    if and only if   

– this is called Maximum Likelihood (ML) estimation 

36 



Skin detection results 
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This same procedure applies in more general circumstances 

• More than two classes 

• More than one dimension 

 

General classification 

H. Schneiderman and T.Kanade 

Example:  face detection 

• Here, X is an image region 

– dimension = # pixels  

– each face can be thought 

of as a point in a high 

dimensional space 

H. Schneiderman, T. Kanade. "A Statistical Method for 3D 

Object Detection Applied to Faces and Cars". IEEE Conference 

on Computer Vision and Pattern Recognition (CVPR 2000)  
http://www-2.cs.cmu.edu/afs/cs.cmu.edu/user/hws/www/CVPR00.pdf  
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