EE292: Fundamentals of ECE

Fall 2012 TTh 10:00-11:15 SEB 1242

Lecture 6 120913

http://www.ee.unlv.edu/~b1morris/ee292/

ENGINEERING TUTORING

Courses tutored include:

CEE – CPE – CS –EE –ME courses + much more

MATH: 181, 182, 283, 431

PHYS: 151, 152, 180, 181

General information:

- <u>Free</u> drop-in lab * no appt needed
- TBE A 207L * Next door to the advising center
- Mon-Fri 12 5:00pm
- Sept. 4 Dec 7, 2012
- (702) 774-4623
- UNLV student ID required

Staff

UNLV graduate & undergraduate engineering majors *Accepting applications for new tutors this semester *

http://academicsuccess.unlv.edu/learningsupport/Tutoring/

Outline

- Review Mesh-Current Analysis
- Thevenin Equivalent Circuits
- Norton Equivalent Circuits
- Capacitance
- Inductance

Mesh-Current Analysis

- Currents around a "mesh" are unknown
 - Requires planar (non-overlapping) circuits
- Use KVL equations around a mesh
- Steps:
- 1. Define mesh currents clockwise around "minimum" loops
- 2. Write network KVL equations for each mesh current
 - Define current sources in terms of mesh currents
 - Shared current sources require a supermesh
 - Dependent source equations should be re-written in terms of mesh currents
- 3. Put the equations into standard form and solve for the node voltages

Write KVL Equations

- KVL clockwise around mesh *i*₁
 - $v_A (i_1 i_3)R_2 (i_1 i_2)R_3 = 0$
- KVL clockwise around mesh *i*₂

$$-(i_2 - i_1)R_3 - v_B - i_2R_4 = 0$$

• KVL clockwise mesh i_3

$$-i_3R_1 + v_B - (i_3 - i_1)R_2 = 0$$

Supermeshes

- A combination of meshes useful for meshcurrent analysis with shared current sources
 Adjust KVL to get an equation around the supermesh
- Same idea as the supernode in node-voltage analysis $\frac{3\Omega}{2}$

Copyright © 2011, Pearson Education, Inc.

Example Controlled Supermesh

- 2 unknown mesh currents \rightarrow need 2 equations
- Replace controlling variable v_x with mesh currents
 v_x = 2i₂
- 2. Create supermesh because of shared current source
- 3. KVL around supermesh

•
$$20 - 4i_1 - 6i_2 - 2i_2 = 0$$

Example Controlled Supermesh

- 2 unknown mesh currents \rightarrow need 2 equations
- 4. Write (mesh) expression for the current source

•
$$av_x = a(2i_2) = i_2 - i_1$$

•
$$(2a-1)i_2 = -i_1$$

•
$$i_1 = 0.5i_2$$

•
$$20 - 4i_1 - 6i_2 - 2i_2 = 0$$

• $20 - 4i_2/2 - 6i_2 - 2i_2 = 0$
• $10i_2 = 20$
• $i_2 = 2 \text{ A and } i_1 = 1 \text{ A}$

Superposition Principle

- Given a circuit with multiple independent sources, the total response is the sum of the responses to each individual source
 - Requires linear dependent sources
- Analyze each independent source individually
 - Must zero out independent sources, but keep dependent sources
 - A voltage source becomes a short circuit
 - A current source becomes an open circuit

Superposition Example $R_1 \neq V_{T1} \neq R_2 \qquad \forall Ki_x$

- 2 independent sources
 - Response is sum of each source response
 - $v_T = v_{T1} + v_{T2}$

Superposition Example $R_1 \neq (v_{T2} \neq R_2) \quad (f) \quad i_{s2}$

- 2 independent sources
 - Response is sum of each source response
 - $\circ v_T = v_{T1} + v_{T2}$

Thevenin Equivalent Circuit

- Equivalent circuit consisting of a voltage source in series with a resistance
 - View the circuit from two terminals
- We care about three things
 - Open circuit voltage
 - Short circuit current
 - Equivalent resistance

Open Circuit Voltage R_{t} i_s r V_t $v_{\rm oc}$ Open circuit means terminal unconnected • No current flows through R_t

• Using KVL

$$V_t - i_s R_t - v_{oc} = 0$$

• $i_s = 0$

•
$$V_t = v_{oc}$$

Short Circuit Current R_t V_t + V_t +

- Short circuit uses a wire to connect the terminals
 Current flows through series resistor
- Current is a function of Thevenin source voltage and resistance

•
$$i_{sc} = \frac{V_t}{R_t}$$

Thevenin Equivalent Resistance

- Equivalent resistance is computed using Ohm's Law
 - Use the open source voltage and short circuit voltage

$$R_t = \frac{v_{oc}}{i_{sc}} = \frac{V_t}{i_{sc}}$$

• Find two of v_{oc} , i_{sc} , or R_t to define the Thevenin equivalent circuit

Compute *R_t* Directly

- Possible only when there are no dependent sources present in network
- Steps:
- 1. Zero out independent sources
 - Short voltage sources
 - Open current sources
- 2. Compute R_t by series/parallel equivalent steps

Example

- Find Thevenin equivalent
- 1. Find short circuit current
- 2. Find open circuit voltage
- 3. Solve for equivalent resistance

Example: Short Circuit Current

- **1.** Find short circuit current i_{sc}
- Notice this is a parallel current divider
 - Opposite resistor over sum of resistances

•
$$i_{sc} = i_s \left(\frac{R_1}{R_1 + R_2}\right)$$

• $i_{sc} = 5 \left(\frac{10}{10 + 40}\right) = 1 \text{ A}$

Example: Open Circuit Voltage $R_2 = 40 \Omega$ + 5Λ $R_1 = 10 \Omega$ v_{oc} -

- 2. Find open circuit voltage v_{oc}
- Notice there is no current through R_2

•
$$v_{oc} = i_s R_1$$

• $v_{oc} = 5 \cdot 10 = 50 \text{ V}$

Example: Thevenin Resistance $R_2 = 40 \Omega$ $R_1 = 10 \Omega$

- 3. Solve for equivalent resistance R_t
 - Ohm's Law

•
$$R_t = \frac{v_{oc}}{i_{sc}} = \frac{50}{1} = 50 \ \Omega$$

- Direct calculation of equivalent resistance
 - Zero sources \rightarrow open current source
 - Notice series connection

$$R_t = R_1 + R_2 = 50 \ \Omega$$

• Replace original circuit with equivalent

•
$$v_{oc} = 50 \text{ V}$$

$$PR_t = 50 \Omega$$

Norton Equivalent Circuit

- Equivalent circuit consisting of a current source in parallel with a resistance
- The same idea as Thevenin
 - Open circuit voltage
 - Short circuit current
 - Equivalent resistance

$$v_{oc} = I_n R_t$$
$$i_{sc} = I_n$$
$$R_t = \frac{v_{oc}}{i_{sc}}$$

- Need to find v_{oc} and i_{sc}
 - Cannot get the equivalent Norton resistance directly because of the dependent source

Express dependent source in terms of voltages
Notice the voltage divider

•
$$v_{\chi} = v_{oc} \left(\frac{R_3}{R_2 + R_3} \right) = v_{oc} \left(\frac{5}{15 + 5} \right) = \frac{v_{oc}}{4}$$

• Find v_{oc} with KCL @ top of circuit (node-voltage) • $\frac{v_x - 0}{4} + \frac{v_{oc} - v_s}{R_1} + \frac{v_{oc} - 0}{R_2 + R_3} = 0$

Example: Norton Open Circuit v_x v_x v_x v_y v_s v_s v_y v_z v_z

• Find *v*_{oc} with KCL @ top of circuit (node-voltage)

$$\frac{v_x - 0}{4} + \frac{v_{oc} - v_s}{R_1} + \frac{v_{oc} - 0}{R_2 + R_3} = 0$$

$$\frac{v_{oc}/4}{4} + \frac{v_{oc} - 15}{20} + \frac{v_{oc}}{20} = 0$$

• After rearranging

$$v_{oc} = \frac{60}{13} V$$

Example: Norton Short Circuit $R_1 = 20 \Omega$ $v_s + 15 V$

Find *i_{sc}* with KCL @ top of circuit (node-voltage)
No current through *R*₂ + *R*₃

•
$$v_x = 0$$

• Dependent source is zeros \rightarrow open circuit

•
$$i_{sc} = \frac{v_s}{R_1} = \frac{15}{20} = \frac{3}{4} A$$

Example: Norton Equivalent Resistance

Find Norton equivalent resistance *R_t*Ohm's Law

•
$$R_t = \frac{v_{oc}}{i_{sc}} = \frac{60}{13} \left(\frac{4}{3}\right) = \frac{240}{39} = 6.15 \ \Omega$$

Chapter 3: Inductance & Capacitance

- Inductors, capacitors are energy-storage devices.
- They are passive elements because they don't generate energy
 - Only energy put in can be later extracted.
- **Capacitance:** circuit property to deal with energy in electric fields
- **Inductance:** circuit property to deal with energy in magnetic fields