EE292: Fundamentals of ECE

Fall 2012 TTh 10:00-11:15 SEB 1242

Lecture 12 121004

http://www.ee.unlv.edu/~b1morris/ee292/

Outline

- Review
- More Diodes
- Lab Kits

Diode Voltage/Current Characteristics

- Forward Bias ("On")
 - Positive voltage v_D supports large currents
 - Modeled as a battery (0.7 V for offset model)
- Reverse Bias ("Off")
 - Negative voltage → no current
 - Modeled as open circuit
- Reverse-Breakdown
 - Large negative voltage supports large negative currents
 - Similar operation as for forward bias

3

Ideal Diode Model

- Two state model
- "On" State
 - Forward operation
 - Diode is a perfect conductor
 →short circuit
- "Off" State
 - Reverse biased
 - No current through diode → open circuit
- Useful for "quick and dirty" understanding of a complicated circuit
- Will improve this model to make it more realistic (offset model)

Circuit Analysis with Diodes

- Assume state {on, off} for each ideal diode and check if the initial guess was correct
 - *i_d* > 0 positive for "on" diode
 - $v_d < 0$ negative for "off" diode
 - These imply a correct guess
 - Otherwise adjust guess and try again
- Exhaustive search is daunting
 - 2^n different combinations for *n* diodes
- Will require experience to make correct guess

Ideal Diode Example

• Use the ideal-diode model to analyze the circuit. Start by assuming D_1 is off and D_2 is on.

Ideal Diode Example

- D_1 is on \rightarrow short circuit
- D_2 is off \rightarrow open circuit

• Using voltage divider

$$v_C = 10\left(\frac{6}{10}\right) = 6 V$$

- $v_{D2} = 3 v_c = 3 6 = -3 V$
 - Reverse biased \rightarrow "off" \rightarrow correct operation
- *D*₁ current through series resistance

$$i_{D1} = \frac{10}{(4+6)k} = \frac{10}{10k} = 1 \ mA > 0$$

• Current flow \rightarrow forward bias \rightarrow "on" \rightarrow correct operation

Offset Diode Model

- (Simple piecewise-linear diode equivalent circuit in book)
- Two state model
- "On" State
 - Forward operation
 - Diode has a fixed voltage across terminals
 - $v_f = v_{on} = 0.7 V$
- "Off" State
 - Reverse biased
 - No current through diode → short circuit
- More realistic than the ideal model
- Circuit analysis works in the same way as for ideal case
 - Replace "on" diode with 0.7 V battery

Copyright © 2011, Pearson Education, Inc.

Rectifier Circuits

- Convert AC power into DC power
- These are the basis for power supplies and battery chargers
 - E.g. turning the 60 Hz AC wall power into a 9 V DC voltage for use in a radio

Half Wave Rectifier Circuit

Copyright © 2011, Pearson Education, Inc.

- AC source only supplies current to load when the voltage is positive
- The ideal diode has matches the positive halves of the sine wave
- Actual rectifiers have a small voltage loss due to the "on" voltage of real diodes

Half Wave Rectifier as Battery Charger

- Current only flows when V_{in} is greater than V_B
 Diode is forward biased ("on")
- *R* is used to limit current into the battery and to avoid destroying the diode

Rectifier with Smoothing Capacitor

(c) Current waveforms

- Capacitor gets charged by AC source
- Reverse biased diode does not allow any current from the source
 - Capacitor supplies energy capacitor discharges energy
 - Discharge causes "ripple" between half wave peaks

Zener Diode

- Diode intended to be operated in breakdown
 - Constant voltage at breakdown
- Three state diode
- 1. On 0.7 V forward bias
- 2. Off reverse bias
- 3. Breakdown v_{BD} reverse breakdown voltage

Voltage-Regulator Circuits

- Regulator produces a constant output voltage from a variable DC source
 - E.g. a 10-14 V battery (voltage lowers as it discharges) and constant 5 V needed for electronic circuits

Zener Diode Regulator Circuit

- Select Zener $v_{BD} = v_o$ for the desired output voltage
- Since the diode is in reverse orientation → *i_D* cannot be positive
- For $V_{ss} > v_o$
 - Zener diode is reverse bias
 - Operating in breakdown
 - $v_D = -v_{BD} = -v_o$
 - Remember Zener diodes are designed to operate in breakdown

Copyright © 2011, Pearson Education, Inc.

Clipper Circuit $v_{in}(t)$ $v_{in}(t)$ $D_{1} \otimes A = D_{1} \otimes A = D_{1} \otimes A$ $D_{2} \otimes D_{4} \otimes D_{4} \otimes B$

- If first (D_1, D_2) branch conducting
 - A is higher voltage than B
 - D_1 on $\rightarrow 0.6 V$ drop across it
 - □ D_2 (reverse biased) operating in breakdown $\rightarrow v_{BD} = 5.4 V$ drop across it
 - $v_{AB} = 0.6 + 5.4 = 6 V$
- If the second (D_3, D_4) branch conducting
 - B is higher voltage than A
 - D_4 on $\rightarrow 0.6 V$ drop across it
 - D_3 (reverse biased) operating in breakdown $\rightarrow v_{BD} = 8.4 V$ drop across it
 - $v_{BA} = 0.6 + 8.4 = 9 V$, $v_{AB} = -9 V$

(b) Waveforms (c) Transfer characteristic

17