EE292: Fundamentals of ECE

Fall 2012 TTh 10:00-11:15 SEB 1242

Lecture 13 121009

http://www.ee.unlv.edu/~b1morris/ee292/

Outline

- Review Diodes
- DC Steady State Analysis
- Transient Analysis
- RC Circuits
- RL Circuits

Diode Voltage/Current Characteristics

- Forward Bias ("On")
 - Positive voltage v_D supports large currents
 - Modeled as a battery (0.7 V for offset model)
- Reverse Bias ("Off")
 - Negative voltage → no current
 - Modeled as open circuit
- Reverse-Breakdown
 - Large negative voltage supports large negative currents
 - Similar operation as for forward bias

3

Diode Models

- Ideal model simple
- Offset model more realistic
- Two state model
- "On" State
 - Forward operation
 - Diode conducts current
 - Ideal model \rightarrow short circuit
 - Offset model \rightarrow battery
- "Off" State
 - Reverse biased
 - No current through diode → open circuit

Circuit Analysis with Diodes

- Assume state {on, off} for each ideal diode and check if the initial guess was correct
 - *i_d* > 0 positive for "on" diode
 - $v_d < 0$ negative for "off" diode
 - These imply a correct guess
 - Otherwise adjust guess and try again
- Exhaustive search is daunting
 - 2^n different combinations for *n* diodes
- Will require experience to make correct guess

Zener Diode

- Diode intended to be operated in breakdown
 - Constant voltage at breakdown
- Three state diode
- 1. On 0.7 V forward bias
- 2. Off reverse bias
- 3. Breakdown v_{BD} reverse breakdown voltage

6

DC Steady-State Analysis

- Analysis of C, L circuits in DC operation
 Steady-state non-changing sources
- Capacitors i = C dv/dt
 Voltage is constant → no current → open circuit
- Inductors $v = L \frac{di}{dt}$
 - Current is constant \rightarrow no voltage \rightarrow short circuit

• Solve for the steady-state values

- Capacitors
 - open circuit
- Inductors
 - short circuit

• Steady-state circuit

• $v_a = I_s R = 2 \cdot 25 = 50 V$ • $i_a = I_s = 2 A$

• Solve for the steady-state values

Steady-state circuit

• Solve for i_1 by equivalent resistance

•
$$i_1 = \frac{v_s}{R_1 + R_2 ||R_3} = \frac{20}{5+5} = 2 A$$

• Solve for i_2 , i_3 by current divider

•
$$i_2 = i_3 = i_1 \frac{R_3}{R_2 + R_3} = 0.5i_1 = 1 A$$

Transients

- The study of time-varying currents and voltages
 Circuits contain sources, resistances, capacitances, inductances, and switches
- Studied using our basic analysis methods
 - KCL, KVL, node-voltage, mesh-current
 - But, more complex due to differential relationships between current and voltage with capacitors and inductors

First-Order RC Circuit

- Contains a single capacitor (C) and resistor (R)
 - Denoted as first order because the differential equation will only contain a first derivative

- What happens in this circuit?
- Switch closed at time t = 0
 Current is able to flow
- Charge on capacitor will flow as current and be absorbed by the resistor
 - Discharge capacitor through resistor *R*

Capacitance charged to V_i prior to t = 0

- KCL @ A
- $i_c + i_R = 0$ • $C \frac{dv_c(t)}{dt} + \frac{v_c(t)}{R} = 0$ • $RC \frac{dv_c(t)}{dt} + v_c(t) = 0$

Capacitance charged to V_i prior to t = 0

• Differential equation describes the voltage across the capacitor over time

•
$$RC \frac{dv_c(t)}{dt} + v_c(t) = 0$$

Solution is of the exponential form

•
$$v_c(t) = Ke^{st}$$

- *K* is a gain constant to be found
- *s* is the exponential time constant to be found
- From your favorite differential equation class you know this as a homogeneous differential equation

•
$$RC \frac{dv_c(t)}{dt} + v_c(t) = 0$$

• Substitute $v_c(t) = Ke^{st}$ into differential equation

- $RCKse^{st} + Ke^{st} = 0$
- Solve for *s*

•
$$(RCs + 1)Ke^{st} = 0$$

• $(RCs + 1) = 0$
• $s = -\frac{1}{RC} \rightarrow RC$ is known as the time constant

•
$$v_c(t) = Ke^{-t/(RC)}$$

•
$$v_c(t) = Ke^{-t/(RC)}$$

- Solve for *k*
 - Capacitor voltage cannot change instantaneously when switched
 - $i = C \frac{dv}{dt}$ requires infinite current
 - Voltage before and after switch are the same

•
$$v_c(0^-) = v_c(0^+)$$

•
$$v_c(0^+) = V_i = Ke^0 = K$$

• V_i is initial charge on capacitor

•
$$K = V_i$$

•
$$v_c(t) = V_i e^{-t/(RC)}$$

Voltage/Time Characteristics

•
$$v_c(t) = V_i e^{-t/(RC)}$$

- $\tau = RC$
- Time constant of the circuit
- The amount of time for voltage to decay by a factor of $e^{-1} = 0.368$
- Decays to 0 in about five time constants (5τ)
- Large $\tau \rightarrow$ longer decay time
 - Larger $R \rightarrow less current$
 - Larger C \rightarrow more charge

19

Copyright © 2011, Pearson Education, Inc.

Charging a Capacitance

- What happens in this circuit?
- When switch is closed:
- Current flows through the resistor into the capacitor
- Capacitor is charged until fully charged
 v_c(t) = V_s

Copyright © 2011, Pearson Education, Inc.

Charging a Capacitance

 Assume capacitor is fully discharged → no voltage across capacitor

•
$$v_c(0^-) = 0$$

• KCL @ A

•
$$i_c + i_R = 0$$

•
$$C\frac{dv_c(t)}{dt} + \frac{v_c(t) - V_s}{R} = 0$$

•
$$RC \frac{dv_c(t)}{dt} + v_c(t) = V_s$$

- Assume solution of the form
 - $v_c(t) = K_1 + K_2 e^{st}$

Copyright © 2011, Pearson Education, Inc.

Solve for *s*, *K*₁ *RCK*₂*se*^{*st*} + *K*₁ + *K*₂*e*^{*st*} = *V*_s
(1 + *RCs*)*K*₂*e*^{*st*} + *K*₁ = *V*_s *s* = -¹/_{*RC*} *K*₁ = *V*_s

Charging a Capacitance

•
$$v_c(t) = V_s + K_2 e^{-t/(RC)}$$

• Solve for *K*₂

•
$$v_c(0^+) = 0 = V_s + K_2 e^0$$

• $K_2 = -V_s$

• Final solution

•
$$v_c(t) = V_s - V_s e^{-t/(RC)}$$

Transient response – eventually decays to a negligible value

Steady-state response or forced response

RC Current

- The previous examples examined voltage but current could also be examined
- Voltage
 - $v_c(t) = V_s V_s e^{-t/(RC)}$
- Current

http://www.electronics-tutorials.ws/rc/rc_1.html

General RC Solution

- Notice both the current and voltage in an RC circuit has an exponential form
- The general solution for current/voltage is:

$$x(t) = x_f + \left[x(t_0^+) - x_f\right] e^{-(t-t_0)/\tau}$$

- *x* represents current or voltage
- t_0 represents time when source switches
- *x_f* final (asymptotic) value of current/voltage
- τ time constant (*RC*)
- Find values and plug into general solution

• $v_f = V_s$

• Solve for $v_c(t)$

- $v_c(0^+) = 0$ no voltage when switch open • $\tau = RC$ equivalent resistance/capacitance
- $v_c(t) = V_s + [0 V_s]e^{-t/(RC)} = V_s V_s e^{-t/(RC)}$
- Solve for $i_c(t)$ • $i_f = 0$ fully charged cap \rightarrow no current • $i_c(0^+) = \frac{V_s - v_c(0^+)}{R} = \frac{V_s - 0}{R} = \frac{V_s}{R}$ • $i_c(t) = 0 + \left[\frac{V_s}{R} - 0\right]e^{-t/(RC)} = \frac{V_s}{R}e^{-t/(RC)}$

First-Order RL Circuits

- Contains DC sources, resistors, and a single inductance
- Same technique to analyze as for RC circuits
- 1. Apply KCL and KVL to write circuit equations
- 2. If the equations contain integrals, differentiate each term in the equation to produce a pure differential equation
 - Use differential forms for I/V relationships for inductors and capacitors
- 3. Assume solution of the form $K_1 + K_2 e^{st}$
- 4. Substitute the solution into the differential equation to determine the values of K_1 and s
- 5. Use initial conditions to determine the value of K_2
- 6. Write the final solution

RL Example

- Before switch
 - $i(0^{-}) = 0$
- KVL around loop

$$V_{s} - Ri(t) - L\frac{di(t)}{dt} = 0$$
$$i(t) + \frac{L}{di(t)} = \frac{V_{s}}{V_{s}}$$

$$l(l) + \frac{R}{R} \frac{dt}{dt} = \frac{R}{R}$$

- Notice this is the same equation form as the charging capacitor example
- Solution of the form
 - $i(t) = K_1 + K_2 e^{st}$
- Solving for K_1 , s

$$K_1 + K_2 e^{st} + \frac{L}{R} K_2 s e^{st} = \frac{V_s}{R}$$

$$K_1 = \frac{V_s}{R}$$

$$\left(1 + \frac{L}{R} s\right) \to S = -\frac{R}{L}$$

Copyright © 2011, Pearson Education, Inc.

- Solving for K_2 • $i(0^+) = 0 = \frac{V_s}{R} + K_2 e^{-tR/L}$ • $0 = \frac{V_s}{R} + K_2 e^0$ • $K_2 = -\frac{V_s}{R}$
- Final Solution • $i(t) = \frac{V_s}{R} - \frac{V_s}{R}e^{-tR/L}$ • $i(t) = 2 - 2e^{-500t}$

RL Example

- $i(t) = 2 2e^{-500t}$
- Notice this is in the general form we used for RC circuits $x(t) = x_f + [x(t_0^+) - x_f] e^{-(t-t_0)/\tau}$ • $\tau = \frac{L}{R}$

$$V_{s} = 100 \text{ V} \underbrace{+}_{-} \underbrace{i(t)}_{-} \underbrace{v(t)}_{-} L = 0.1 \text{ H}$$

 $\mathbf{28}$

- Find voltage v(t)•
 - $v_f = 0$, steady-state short
 - $v(0^+) = 100$
 - No current immediately through R, $v = L \frac{di(t)}{dt}$

•
$$v(t) = 100e^{-t/\tau}$$

(a)