EE292: Fundamentals of ECE

Fall 2012 TTh 10:00-11:15 SEB 1242

Lecture 14 121011

http://www.ee.unlv.edu/~b1morris/ee292/

Outline

- Review
 - Steady-State AnalysisRC Circuits
- RL Circuits

DC Steady-State Analysis

- Analysis of C, L circuits in DC operation
 Steady-state non-changing sources
 A long time after switch event
- Capacitors $i = C \frac{dv}{dt}$
 - Voltage is constant \rightarrow no current \rightarrow open circuit
- Inductors $v = L \frac{di}{dt}$

• Current is constant \rightarrow no voltage \rightarrow short circuit

• What are initial conditions of this circuit

- Open switch \rightarrow no current in circuit
 - $\bullet i_x(0^-)=0$
 - No charge on capacitor \rightarrow no voltage across it

•
$$v_{\chi}(0^-)=0$$

• Solve for the steady-state values

- Capacitors
 - Open circuit
- Inductors
 - Short circuit

• Solve for the steady-state values

• Voltage v_{χ} by voltage divider • $v_{\chi} = V_s \left(\frac{R_2}{R_1 + R_2}\right) = 10 \left(\frac{5}{5+5}\right) = 5 V$

• Current i_x by Ohm's Law

•
$$i_x = \frac{V}{R} = \frac{V}{R_{eq}} = \frac{10}{5+5} = 1 A$$

• $v_x = i_x R_2 = 1(5) = 5V$

Transients

- The study of time-varying currents and voltages
 Circuits contain sources, resistances, capacitances, inductances, and switches
- Studied using our basic analysis methods
 KCL, KVL, node-voltage, mesh-current
 - But, more complex due to differential relationships between current and voltage with capacitors and inductors

Discharging a Capacitor

• KCL @ A • $C \frac{dv_c(t)}{dt} + \frac{v_c(t)}{R} = 0$ • $RC \frac{dv_c(t)}{dt} + v_c(t) = 0$

Capacitance charged to V_i prior to t = 0

- Differential equation describes the voltage across the capacitor over time
- Solution is of the exponential form

•
$$v_c(t) = Ke^{st}$$

Discharging a Capacitor

•
$$RCKse^{st} + Ke^{st} = 0$$

• Solve for *s*

•
$$(RCs + 1)Ke^{st} = 0$$

• $(RCs + 1) = 0$
• $s = -\frac{1}{RC} \rightarrow RC$ is known as the time constant

•
$$v_c(t) = Ke^{-t/(RC)}$$

Discharging a Capacitor

•
$$v_c(t) = Ke^{-t/(RC)}$$

- Solve for *K*
 - Voltage before and after switch are the same

•
$$v_c(0^-) = v_c(0^+)$$

•
$$v_c(0^+) = V_i = Ke^0 = K$$

• V_i is initial charge on capacitor

•
$$K = V_i$$

•
$$v_c(t) = V_i e^{-t/(RC)}$$

Voltage/Time Characteristics

•
$$v_c(t) = V_i e^{-t/(RC)}$$

- $\tau = RC$
- Time constant of the circuit
- The amount of time for voltage to decay by a factor of $e^{-1} = 0.368$
- Decays to 0 in about five time constants (5τ)
- Large $\tau \rightarrow$ longer decay time
 - Larger $R \rightarrow less current$
 - Larger C \rightarrow more charge

Charging a Capacitance

 Assume capacitor is fully discharged → no voltage across capacitor

$$\quad v_c(0^-)=0$$

• KCL @ A

•
$$C\frac{dv_c(t)}{dt} + \frac{v_c(t) - V_s}{R} = 0$$

- $RC \frac{dv_c(t)}{dt} + v_c(t) = V_s$
- Assume solution of the form
 - $v_c(t) = K_1 + K_2 e^{st}$

Copyright © 2011, Pearson Education, Inc.

• Solve for *s*, *K*₁ • *RCK*₂*se*^{*st*} + *K*₁ + *K*₂*e*^{*st*} = *V*_s • (1 + *RCs*)*K*₂*e*^{*st*} + *K*₁ = *V*_s • *s* = $-\frac{1}{RC}$ • *K*₁ = *V*_s

Charging a Capacitance

•
$$v_c(t) = V_s + K_2 e^{-t/(RC)}$$

 $v_C(t)$ • Solve for *K*₂ V_s • $v_c(0^+) = 0 = V_s + K_2 e^0$ $0.632V_{s}$ • $K_2 = -V_s$ Final solution 2τ • $v_c(t) = V_s - V_s e^{-t/(RC)}$ Copyright © 2011, Pearson Education, Inc. Transient response – eventually decays to a negligible value

Steady-state response or forced response

RC Current

Voltage

$$\upsilon \quad v_c(t) = V_s - V_s e^{-t/(RC)}$$

• Current

$$i_{c} = \frac{V_{s} - v_{c}(t)}{R} = C \frac{dv_{c}(t)}{dt}$$
$$i_{c} = C \left(\frac{V_{s}}{RC} e^{-t/(RC)}\right)$$
$$i_{c} = \frac{V_{s}}{R} e^{-t/(RC)}$$

http://www.electronics-tutorials.ws/rc/rc_1.html

General 1st-Order RC Solution

- Notice both the current and voltage in an RC circuit has an exponential form
- The general solution for current/voltage is:

$$x(t) = x_f + \left[x(t_0^+) - x_f\right] e^{-(t-t_0)/\tau}$$

- x represents current or voltage
- t_0 represents time when source switches
- *x_f* final (asymptotic) value of current/voltage
- τ time constant (*RC*)
- Find values and plug into general solution

• $v_f = V_s$

• Solve for $v_c(t)$

- $v_c(0^+) = 0$ no voltage when switch open • $\tau = RC$ equivalent resistance/capacitance
- $v_c(t) = V_s + [0 V_s]e^{-t/(RC)} = V_s V_s e^{-t/(RC)}$ • Solve for $i_c(t)$
- Solve for $i_c(t)$ • $i_f = 0$ fully charged cap \rightarrow no current • $i_c(0^+) = \frac{V_s - v_c(0^+)}{R} = \frac{V_s - 0}{R} = \frac{V_s}{R}$ • $i_c(t) = 0 + \left[\frac{V_s}{R} - 0\right]e^{-t/(RC)} = \frac{V_s}{R}e^{-t/(RC)}$

First-Order RL Circuits

- Contains DC sources, resistors, and a single inductance
- Same technique to analyze as for RC circuits
- 1. Apply KCL and KVL to write circuit equations
- 2. If the equations contain integrals, differentiate each term in the equation to produce a pure differential equation
 - Use differential forms for I/V relationships for inductors and capacitors
- 3. Assume solution of the form $K_1 + K_2 e^{st}$
- 4. Substitute the solution into the differential equation to determine the values of K_1 and s
- 5. Use initial conditions to determine the value of K_2
- 6. Write the final solution

RL Example

- Before switch
 - $i(0^{-}) = 0$
- KVL around loop

$$V_{s} - Ri(t) - L\frac{di(t)}{dt} = 0$$
$$i(t) + \frac{L}{di(t)} = \frac{V_{s}}{V_{s}}$$

$$l(l) + \frac{R}{R} \frac{dt}{dt} - \frac{R}{R}$$

- Notice this is the same equation form as the charging capacitor example
- Solution of the form
 - $i(t) = K_1 + K_2 e^{st}$
- Solving for K_1 , *s*

•
$$K_1 + K_2 e^{st} + \frac{L}{R} K_2 s e^{st} = \frac{V_s}{R}$$

• $K_1 = \frac{V_s}{R}$
• $\left(1 + \frac{L}{R} s\right) = 0 \rightarrow S = -\frac{R}{L}$

Copyright © 2011, Pearson Education, Inc.

- Solving for K_2 • $i(0^+) = 0 = \frac{V_s}{R} + K_2 e^{-tR/L}$ • $0 = \frac{V_s}{R} + K_2 e^0$ • $K_2 = -\frac{V_s}{R}$
- Final Solution • $i(t) = \frac{V_s}{R} - \frac{V_s}{R}e^{-tR/L}$ • $i(t) = 2 - 2e^{-500t}$

RL Example

•
$$i(t) = 2 - 2e^{-500t}$$

$$V_{s} = 100 \text{ V} \underbrace{+}_{-} \underbrace{i(t)}_{-} \underbrace{v(t)}_{-} L = 0.1 \text{ H}$$

- Find voltage v(t)
 - $v_f = 0$, steady-state short

•
$$v(0^+) = 100$$

• No current immediately
through *R*,
$$v = L \frac{di(t)}{dt}$$

•
$$v(t) = 100e^{-t/\tau}$$

(a)

(b)

Exercise 4.5 2 A t = 0

- Initial conditions
- For t < 0
 - All source current goes through switched wire
 - $i_R(t) = i_L(t) = 0 A$
 - $v(t) = i_R(t)\mathbf{R} = 0$ V
- For $t = 0^+$ (right after switch)
 - $i_L(t) = 0$
 - Current can't change immediately through an inductor
 - $i_R(t) = 2 \text{ A, by KCL}$

•
$$v(t) = i_R(t) \mathbf{R} = 20 \, \mathbf{V}$$

- Steady-state
 - Short inductor
- v(t) = 0
 - Short circuit across inductor

•
$$i_R = 0$$

All current through short

Exercise 4.5 2 A t = 0

- Initial conditions
- For t < 0
 - All source current goes through switched wire
 - $i_R(t) = i_L(t) = 0 A$
 - $v(t) = i_R(t)\mathbf{R} = 0$ V
- For $t = 0^+$ (right after switch)
 - $i_L(t) = 0$
 - Current can't change immediately through an inductor
 - $i_R(t) = 2 \text{ A, by KCL}$

•
$$v(t) = i_R(t) \mathbf{R} = 20 \, \mathbf{V}$$

- Steady-state
 - Short inductor
- v(t) = 0
 - Short circuit across inductor

•
$$i_R = 0$$

All current through short

Exercise 4.5 2 A t=0 $i_R(t)$ v(t) $i_R(t)$ v(t) 2 H copyright © 2011, Pearson Education, Inc.

- Can use network analysis to come up with a differential equation, but you would need to solve it
- Instead, use the general 1st-order solution

$$x(t) = x_f + [x(t_0^+) - x_f] e^{-(t-t_0)/\tau}$$

• Time constant τ

•
$$\tau = \frac{L}{R} = \frac{2}{10} = 0.2$$

• Voltage v(t)• $v(t) = 0 + [20 - 0]e^{-t/0.2} = 20e^{-t/0.2} V$

• Current $i_L(t)$, $i_R(t)$ • $i_L(t) = 2 + [0-2]e^{-t/0.2} = 2 - 2e^{-t/0.2} A$ • $i_R(t) = 0 + [2-0]e^{-t/0.2} = 2e^{-t/0.2} A$

RC/RL Circuits with General Sources

• Previously,

•
$$RC \frac{dv_c(t)}{dt} + v_c(t) = V_s$$

• What if V_s is not constant

$$RC \frac{dv_c(t)}{dt} + v_c(t) = v_s(t)$$

- Now have a general source that is a function of time
- The solution is a differential equation of the form

$$\tau \frac{dx(t)}{dt} + x(t) = f(t)$$

Where f(t) is known as the forcing function (the circuit source)

General Differential Equations

General differential equation

•
$$\tau \frac{dx(t)}{dt} + x(t) = f(t)$$

• The solution to the diff equation is

•
$$x(t) = x_p(t) + x_h(t)$$

- $x_p(t)$ is the particular solution
- $x_h(t)$ is the homogeneous solution

Particular Solution

•
$$\tau \frac{dx_p(t)}{dt} + x_p(t) = f(t)$$

- The solution x_p(t) is called the forced response because it is the response of the circuit to a particular forcing input f(t)
- The solution x_p(t) will be of the same functional form as the forcing function

• E.g. • $f(t) = e^{st} \rightarrow x_p(t) = Ae^{st}$ • $f(t) = \cos(\omega t) \rightarrow x_p(t) = A\cos(\omega t) + B\sin(\omega t)$

Homogeneous Solution

•
$$\tau \frac{dx_h(t)}{dt} + x_h(t) = 0$$

- *x_h(t)* is the solution to the differential equation when there is no forcing function
 - Does not depend on the sources
 - Dependent on initial conditions (capacitor voltage, current through inductor)
- $x_h(t)$ is also known as the natural response
- Solution is of the form

•
$$x_h(t) = K e^{-t/\tau}$$

General Differential Solution

- Notice the final solution is the sum of the particular and homogeneous solutions
 x(t) = x_p(t) + x_h(t)
- It has an exponential term due to x_h(t) and a term x_p(t) that matches the input source

Second-Order Circuits

- RLC circuits contain two energy storage elements
 - This results in a differential equation of second order (has a second derivative term)
- This is like a mass spring system from physics

Copyright © 2011, Pearson Education, Inc.

RLC Series Circuit

- KVL around loop
 - $v_s(t) L \frac{di(t)}{dt} i(t)R v_c(t) = 0$
- Solve for $v_c(t)$

•
$$v_c(t) = v_s(t) - L \frac{di(t)}{dt} - i(t)R$$

• Take derivative

$$\frac{dv_c(t)}{dt} = \frac{dv_s(t)}{dt} - L\frac{d^2i(t)}{dt^2} - R\frac{di(t)}{dt}$$

• Solve for current through capacitor

•
$$i(t) = C \frac{dv_c(t)}{dt}$$

•
$$i(t) = C \left[\frac{dv_s(t)}{dt} - L \frac{d^2 i(t)}{dt^2} - R \frac{di(t)}{dt} \right]$$

•
$$\frac{d^2 i(t)}{dt^2} - \frac{R}{L} \frac{di(t)}{dt} + \frac{1}{LC} i(t) = \frac{1}{L} \frac{dv_s(t)}{dt}$$

• The general 2nd-order constant coefficient equation

$$\frac{di^2(t)}{dt^2} + 2\alpha \frac{di(t)}{dt} + \omega_0^2 i(t) = f(t)$$

$$\alpha = \frac{R}{2L}, \qquad \omega_0 = \frac{1}{\sqrt{LC}}, \qquad f(t) = \frac{1}{L} \frac{dv_s(t)}{dt}$$