EE292: Fundamentals of ECE

Fall 2012 TTh 10:00-11:15 SEB 1242

Lecture 20 121101

http://www.ee.unlv.edu/~b1morris/ee292/

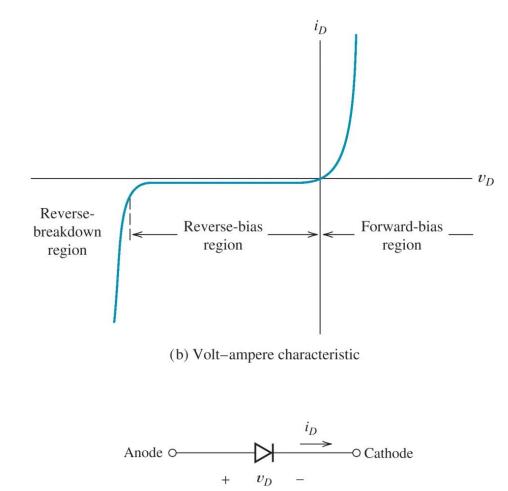
Outline

- Chapters 1-3
 - Circuit Analysis Techniques
- Chapter 10 Diodes
 - Ideal Model
 - Offset Model
 - Zener Diodes
- Chapter 4 Transient Analysis
 - Steady-State Analysis
 - 1st-Order Circuits
- Chapter 5 Steady-State Sinusoidal Analysis
 - RMS Values
 - Phasors
 - Complex Impedance
 - Circuit Analysis with Complex Impedance

Chapter 10 - Diodes

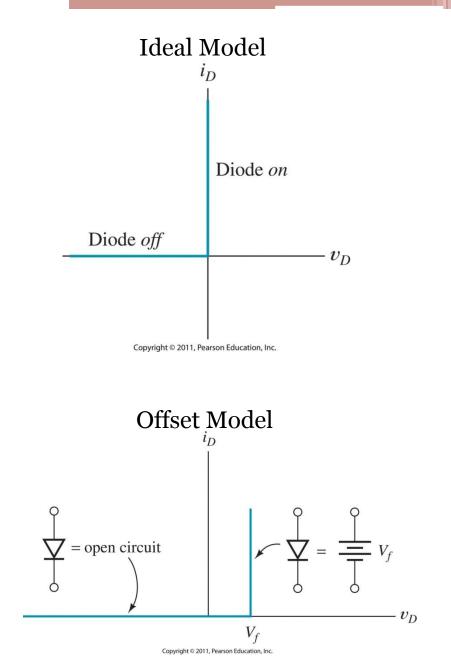
Diode Voltage/Current Characteristics

- Forward Bias ("On")
 - Positive voltage v_D supports large currents
 - Modeled as a battery (0.7 V for offset model)
- Reverse Bias ("Off")
 - Negative voltage → no current
 - Modeled as open circuit
- Reverse-Breakdown
 - Large negative voltage supports large negative currents
 - Similar operation as for forward bias



Diode Models

- Ideal model simple
- Offset model more realistic
- Two state model
- "On" State
 - Forward operation
 - Diode conducts current
 - Ideal model \rightarrow short circuit
 - Offset model \rightarrow battery
- "Off" State
 - Reverse biased
 - No current through diode → open circuit



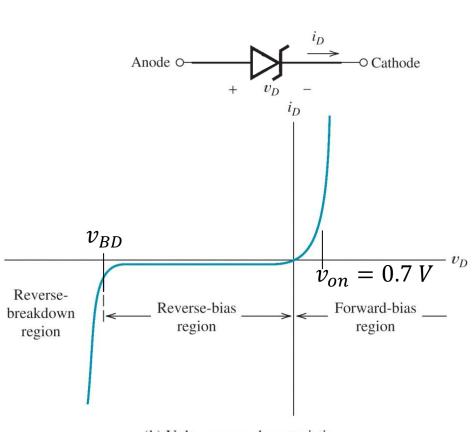
5

Circuit Analysis with Diodes

- Assume state {on, off} for each ideal diode and check if the initial guess was correct
 - *i_d* > 0 positive for "on" diode
 - $v_d < v_{on}$ for "off" diode
 - These imply a correct guess
 - Otherwise adjust guess and try again
- Exhaustive search is daunting
 - 2ⁿ different combinations for n diodes
- Will require experience to make correct guess

Zener Diode

- Diode intended to be operated in breakdown
 - Constant voltage at breakdown
- Three state diode
- 1. On 0.7 V forward bias
- 2. Off reverse bias
- 3. Breakdown v_{BD} reverse breakdown voltage



Chapter 4 - Transient Analysis

DC Steady-State Analysis

- Analysis of C, L circuits in DC operation
 Steady-state non-changing sources
- Capacitors i = C dv/dt
 Voltage is constant → no current → open circuit
- Inductors $v = L \frac{di}{dt}$
 - Current is constant \rightarrow no voltage \rightarrow short circuit
- Use steady-state analysis to find initial and final conditions for transients

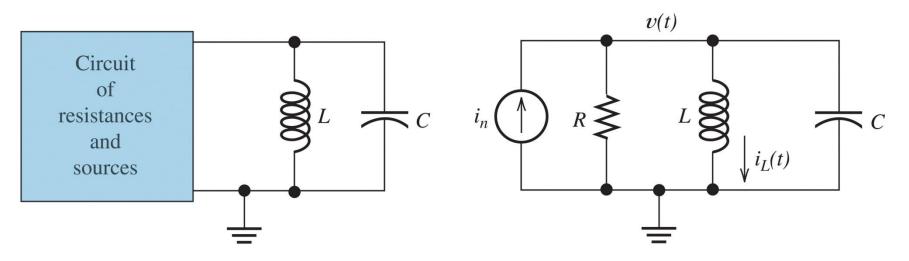
General 1st-Order Solution

- Both the current and voltage in an 1st-order circuit has an exponential form
 - RC and LR circuits
- The general solution for current/voltage is:

$$x(t) = x_f + \left[x(t_0^+) - x_f\right] e^{-(t-t_0)/\tau}$$

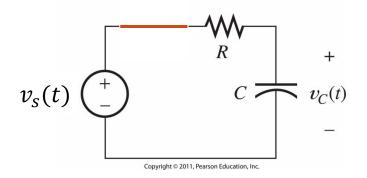
- x represents current or voltage
- t_0 represents time when source switches
- *x_f* final (asymptotic) value of current/voltage
- τ time constant (*RC* or $\frac{L}{R}$)
 - Transient is essentially zero after 5τ
- Find values and plug into general solution
 - Steady-state for initial and final values
 - Two-port equivalents for τ

Example Two-Port Equivalent



- Given a circuit with a parallel capacitor and inductor
 - Use Norton equivalent to make a parallel circuit equivalent
- Remember:
 - Capacitors add in parallel
 - Inductors add in series

RC/RL Circuits with General Sources



•
$$RC \frac{dv_c(t)}{dt} + v_c(t) = v_s(t)$$

• The solution is a differential equation of the form

$$\tau \frac{dx(t)}{dt} + x(t) = f(t)$$

- Where f(t) the forcing function
- The full solution to the diff equation is composed of two terms

•
$$x(t) = x_p(t) + x_h(t)$$

- $x_p(t)$ is the particular solution
 - The response to the particular forcing function
 - *x_p(t)* will be of the same functional form as the forcing function

•
$$f(t) = e^{st} \to x_p(t) = Ae^{st}$$

•
$$f(t) = \cos(\omega t) \rightarrow x_p(t) =$$

 $A\cos(\omega t) + B\sin(\omega t)$

- $x_h(t)$ is the homogeneous solution
 - "Natural" solution that is consistent with the differential equation for f(t) = 0
 - The response to any initial conditions of the circuit
 - Solution of form

•
$$x_h(t) = Ke^{-t/t}$$

Second-Order Circuits

- RLC circuits contain two energy storage elements
 This regults in a differential equation of second order
 - This results in a differential equation of second order (has a second derivative term)
- Use circuit analysis techniques to develop a general 2nd-order differential equation of the form

$$\frac{di^2(t)}{dt^2} + 2\alpha \frac{di(t)}{dt} + \omega_0^2 i(t) = f(t)$$

- Use KVL, KCL and I/V characteristics of inductance and capacitance to put equation into standard form
- Must identify α , ω_0 , f(t)

Useful I/V Relationships

Inductor

•
$$v(t) = L \frac{di(t)}{dt}$$

• $i(t) = \frac{1}{L} \int_{t_0}^t v(t) dt + i(t_0)$

Capacitor

•
$$i(t) = C \frac{dv(t)}{dt}$$

• $v(t) = \frac{1}{c} \int_{t_0}^t i(t) dt + v(t_0)$

Chapter 5 - Steady-State Sinusoidal Analysis

Steady-State Sinusoidal Analysis

 In Transient analysis, we saw response of circuit network had two parts

• $x(t) = x_p(t) + x_h(t)$

- Natural response x_h(t) had an exponential form that decays to zero
- Forced response $x_p(t)$ was the same form as forcing function
 - Sinusoidal source \rightarrow sinusoidal output
 - Output persists with the source → at steady-state there is no transient so it is important to study the sinusoid response

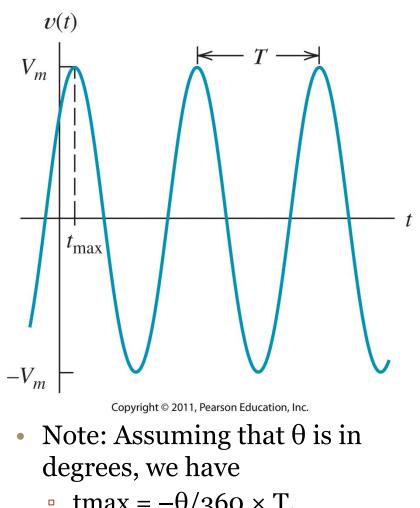
Sinusoidal Currents and Voltages

- Sinusoidal voltage •
 - $v(t) = V_m \cos(\omega_0 t + \theta)$
 - V_m peak value of voltage
 - ω_0 angular frequency in radians/sec
 - θ phase angle in radians
- This is a periodic signal described by
 - T the period in seconds 2π

•
$$\omega_0 = \frac{2\pi}{T}$$

• f – the frequency in Hz = 1/sec

•
$$\omega_0 = 2\pi f$$



 $tmax = -\theta/360 \times T.$

Root-Mean-Square Values

•
$$P_{avg} = \frac{\left[\sqrt{\frac{1}{T}\int_0^T v^2(t)dt}\right]^2}{R}$$

• Define rms voltage

•
$$V_{rms} = \sqrt{\frac{1}{T} \int_0^T v^2(t) dt}$$

 $P_{avg} = \frac{V_{rms}^2}{R}$

• Similarly define rms current

•
$$I_{rms} = \sqrt{\frac{1}{T} \int_0^T i^2(t) dt}$$

 $P_{avg} = I_{rms}^2 R$

RMS Value of a Sinusoid

• Given a sinusoidal source

•
$$v(t) = V_m \cos(\omega_0 t + \theta)$$

•
$$V_{rms} = \sqrt{\frac{1}{T}} \int_0^T v^2(t) dt$$

$$V_{rms} = \sqrt{\frac{1}{T}} \int_0^T V_m^2 \cos^2(\omega_0 t + \theta) dt$$

using $\cos^2(x) = 1/2 + 1/2 \cos(2x)$
$$= \sqrt{\frac{V_m^2}{2T}} \int_0^T [1 + \cos(2\omega_0 t + 2\theta)] dt$$

$$\vdots$$

$$= \frac{V_m}{\sqrt{2}}$$

- The rms value is an "effective" value for the signal
 - E.g. in homes we have 60Hz
 115 V rms power

$$V_m = \sqrt{2} \cdot V_{rms} = 163 V$$

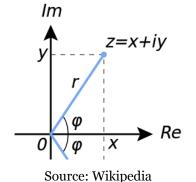
Conversion Between Forms

- Rectangular to polar form
- $r^2 = x^2 + y^2$

• $\tan\theta = \frac{y}{x}$

- Polar to rectangular form
- $x = r \cos \theta$
- $y = r \sin \theta$
- Convert to polar form
- z = 4 j4
- $r = \sqrt{4^2 + 4^2} = 4\sqrt{2}$
- $\theta = \arctan\left(\frac{y}{x}\right) =$ arctan(-1) = $-\frac{\pi}{4}$ • $z = 4\sqrt{2}e^{-j\pi/4}$

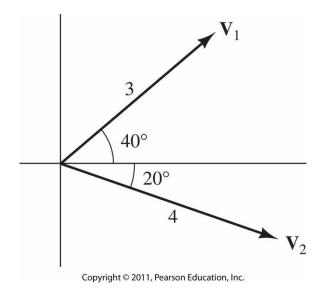
x (degrees)	x (radians)	sin(x)	cos(x)	tan(x)
0	0	0	1	0
15	$\frac{\pi}{12}$	$\frac{-1+\sqrt{3}}{2\sqrt{2}}$	$\frac{1+\sqrt{3}}{2\sqrt{2}}$	$2 - \sqrt{3}$
30	$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{3}}$
45	$\frac{\pi}{4}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$	1
60	$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$
75	$\frac{5\pi}{12}$	$\frac{1+\sqrt{3}}{2\sqrt{2}}$	$\frac{-1+\sqrt{3}}{2\sqrt{2}}$	$2 + \sqrt{3}$
90	$\frac{\pi}{2}$	1	0	NaN



Phasors

- A representation of sinusoidal signals as vectors in the complex plane
 - Simplifies sinusoidal steadystate analysis
- Given
 - $v_1(t) = V_1 \cos(\omega t + \theta_1)$
- The phasor representation is
 - $V_1 = V_1 \angle \theta_1$
- For consistency, use only cosine for the phasor
 - $v_2(t) = V_2 \sin(\omega t + \theta_2) =$ $V_2 \cos(\omega t + \theta_2 - 90^\circ)$
 - $\boldsymbol{V}_2 = \boldsymbol{V}_2 \boldsymbol{\angle} (\boldsymbol{\theta}_2 90^\circ)$

• Phasor diagram



•
$$V_1 = 3 \angle (40^\circ)$$

• $V_2 = 4 \angle (-20^\circ)$

- Phasors rotate counter clockwise
 - V_1 leads V_2 by 60°
 - V_2 lags V_1 by 60°

Complex Impedance

- Impedance is the extension of resistance to AC circuits
 - Extend Ohm's Law to an impedance form for AC signals

• V = ZI

Inductors oppose a change in current

$$Z_L = \omega L \angle \left(\frac{\pi}{2}\right) = j \omega L$$

- Current lags voltage by 90°
- Capacitors oppose a change in voltage

$$Z_C = \frac{1}{\omega C} \angle \left(-\frac{\pi}{2}\right) = -j\frac{1}{\omega C} = \frac{1}{j\omega C}$$

- Current leads voltage by 90
- Resistor impendence the same as resistance

$$Z_R = R$$

Circuit Analysis with Impedance

- KVL and KCL remain the same
 Use phasor notation to setup equations
- Replace sources by phasor notation
- Replace inductors, capacitors, and resistances by impedance value
 - This value is dependent on the source frequency ω
- Use your favorite circuit analysis techniques to solve for voltage or current
 - Reverse phasor conversion to get sinusoidal signal in time