EE292: Fundamentals of ECE

Fall 2012 TTh 10:00-11:15 SEB 1242

Lecture 21 121113

http://www.ee.unlv.edu/~b1morris/ee292/

Outline

- Chapter 7 Logic Circuits
- Binary Number Representation
- Binary Arithmetic
- Combinatorial Logic

Logic Circuits

- Analog signal signal of continuous "time" variable with a continuous range of outputs
 - The signal has an infinite range of values at any time
 - E.g. a speech signal
- Digital signal a signal with discrete "time" variable and only a few restricted amplitude values

Digital Signals

- Computers are examples of digital circuits
 They operate on digital signals
- Binary signals are the most common type of signal
 - The output of a binary signal takes only two possible values
 - The two output values are often given "logical values" of a 1 or 0
- Often digital signals often come from physical analog processes
 - The analog signal is converted into a digital form for processing in a computer

Digital Noise Advantage

- Digital signals are robust to noise
 - The exact signal value is not required
 - Rely on "logic" values
- Today it is possible to manufacture large numbers of digital logic circuits on integrated circuits because of this simplification

Positive Logic

- Logical 1
 - The higher amplitude value in a binary system
 - E.g. 5 volts
 - Also known as "high", "true", or "on"
- Logical O
 - The lower amplitude in a binary system
 - E.g. o volts
 - Also known as "low", "false", or "off"
- Logic variables signals in logic systems that switch between high and low
 - Will be denoted by uppercase letters (E.g. A, B, C)

Logic Ranges and Noise Margins

- Logic circuits are designed to have a range of input voltages map to a logical "high" or "low"
 - *V_{IL}* largest input value for logic 0 at input
 - *V_{IH}* smallest input value for logic 1 at input
 - *V*_{OL} largest output value for logic 0 at input
 - *V*_{OH} smallest output value for logic 1 at input
- Input and output have different logical ranges due to noise
 - The difference is known as the noise margin

Digital Words

- Bit a single binary digit
 - Smallest amount of information that can be represented in a digital system
 - Represents a yes/no for a digital variable
 - E.g. R = 0, represents not raining while R = 1, represents raining
- In order to represent more complex information, bits can be combined into digital words
 - A byte is 8 bits and a nibble is 4 bits (used often in computers, e.g. a byte to represent each key on a keyboard)
- Example *RWS*
 - *R* for rain, *W* for wind, *S* for sunny
 - *RWS* = 110 indicates it is raining, with winds, and cloudy (e.g. not sunny)

Representation of Numerical Data

- Digital words allow representation of more complex values by concatenating digital variables
 - Only binary yes/no results were allowed
 - *RWS* allowed 2³ different combinations of weather conditions
- Need a way to represent the wide range of values encountered in the physical world
 - Must be able to convert real numbers into a binary form for computation in a digital fashion

Decimal Representation of Numbers

- Consider a decimal number (base 10)
 This is what we as humans are familiar with
- Example 743.2₁₀
 This is interpreted as
 - 7 × 10² + 4 × 10¹ + 3 × 10⁰ + 2 × 10⁻¹
 - Each digit is a multiplier by 10^d
 - *d* is the digit location
 - Positive to the left of decimal point and negative to the right

Binary Representation of Numbers

- Use the same technique as for decimal but instead use base 2 numbers
- Example 1101.1 ₂
- $1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 + 1 \times 2^{-1}$
 - $1 \times 2^3 = 8$
 - $1 \times 2^2 = 4$
 - $1 \times 2^0 = 1$
 - $1 \times 2^{-1} = 0.5$
- 1101.1 = 13.5
- Notice the subscript is used to indicate what the base to use for the number interpretation

Numerical Binary Words

- Enumerate all combinations of values for binary word
 - An *N* bit word can represent 2^N different numbers
- Let *N* = 4, then there are 2⁴ = 16 different values that can be represented

Binary	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
Decimal	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

• The leading zeros are presented in binary form because the digital circuits typically operate on fixed size words

Positional Notation for Numbers

- Base B number \rightarrow B symbols per digit
 - ^D Base 10 (Decimal): 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
 - Base 2 (binary) 0, 1
- Number representation
 - $d_{31}d_{30}...d_2d_1d_0$ is 32 digit number
 - Value = $d_{31} \times B^{31} + d_{30} \times B^{30} + \dots + d_1 \times B^1 + d_0 \times B^0$
- Examples
 - (Decimal): 90
 - = $9 \times 10^1 + 0 \times 10^0$
 - (Binary): 1011010
 - = $1 \times 2^{6} + 0 \times 2^{5} + 1 \times 2^{4} + 1 \times 2^{3} + 0 \times 2^{2} + 1 \times 2^{1} + 0 \times 2^{0}$
 - = 64 + 16 + 8 + 2
 - = 90
 - 7 binary digits needed for 2 digit decimal number

Hexadecimal Number: Base 16

- More human readable than binary
- Base with easy conversion to binary
 - Any multiple of 2 base could work (e.g. octal)
- Hexadecimal digits

Decimal	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Binary	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
Hex (16)	0	1	2	3	4	5	6	7	8	9	A	В	С	D	Е	F
octal (8)	0	1	2	3	4	5	6	7								

- 1 hex digit represents 16 decimal values or 4 binary digits
 - Will use Ox to indicate hex digit

Hex/Binary Conversion

Decimal	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
binary	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
hex	0	1	2	3	4	5	6	7	8	9	A	В	С	D	Е	F

- Convert between 4-bits and a hex digit using the conversion table above
- Examples
 - 1010 1100 0101 (binary)
 - $\bullet = 0 \times AC5$
 - 10111 (binary)
 - = 0001 0111 (binary)
 - = 0×17
 - 0x3F9
 - = 0011 1111 1001 (binary)
 - = 11 1111 1001 (binary)

Signed Numbers

- N bits represents 2^N values
- Unsigned integers
 - **Range** [0, 2³²-1]
- How can negative values be indicated?
 - Use a sign-bit
 - Boolean indicator bit (flag)

Sign and Magnitude

- 16-bit numbers
 - +1 (decimal) = 0000 0000 0000 0001 = 0x0001
 - □ -1 (decimal) = 1000 0000 0000 0001 = 0x8001
- Problems
 - Two zeros
 - 0x0000
 - 0x8000
 - Complicated arithmetic
 - Special steps needed to handle when signs are same or different (must check sign bit)

Ones Complement

- Complement the bits of a number
 - +1 (decimal) = 0000 0000 0000 0001 = 0x0001
 - -1 (decimal) = 1111 1111 1110 = 0xFFFE
- Positive number have leading zeros
- Negative number have leading ones
- Arithmetic not too difficult
- Still have two zeros

Two's Complement

- Subtract large number from a smaller one
 - Borrow from leading zeros
 - Result has leading ones
- Unbalanced representation
 - Leading zeros for positive
 - 2^{N-1} non-negatives
 - Leading ones for negative number
 - 2^{N-1} negative number
 - One zero representation
- First bit is sign-bit (must indicate width)

• Value =
$$d_{31} \times -2^{31} + d_{30} \times 2^{30} + \dots + d_1 \times 2^1 + d_0 \times 2^0$$

Negative value for sign bit

Binary	Decimal
0011	3
0100	4
1111	-1

Two's Complement Negation

- Shortcut = invert bits and add 1
 - Number + complement = 0xF..F = -1
 - $x + \overline{x} = -1$
 - $\bar{x} + 1 = -x$
- Example
 - *x* 1111 1110
 - \bar{x} 0000 0001
 - $\bar{x} + 1 \quad 0000 \ 0010$

Two's Complement Sign Extension

- Machine's have fixed width (e.g. 32-bits)
 - Real numbers have infinite width (invisible extension)
 - Positive has infinite o's
 - Negative has infinite 1's
- Replicate sign bit (msb) of smaller container to fill new bits in larger container
- Example

1111 1111 1111 1111

Overflow

- Fixed bit width limits number representation
- Occurs if result of arithmetic operation cannot be represented by hardware bits
- Example
 - 8-bit: 127 + 127

Binary	Decimal
0111 1111	127
0111 1111	127
1111 1110	-2 (254)