EE292: Fundamentals of ECE

Fall 2012 TTh 10:00-11:15 SEB 1242

Lecture 22 121115

http://www.ee.unlv.edu/~b1morris/ee292/

Outline

- Review
 - Binary Number Representation
 - Binary Arithmetic
- Combinatorial Logic

Digital Signals

• A signal with discrete "time" variable and only a few restricted amplitude values

(a) Analog signal

(b) Digital signal

- Binary signals are the most common type of signal
 - The output takes only two possible values
 - The two output values are often given positive "logical values" of a 1 (high) or 0 (low)

Digital Words

- Bit a single binary digit
 - Smallest amount of information that can be represented in a digital system
 - Represents a yes/no for a digital variable
 - E.g. R = 0, represents not raining while R = 1, represents raining
- In order to represent more complex information, bits can be combined into digital words
 - A byte is 8 bits and a nibble is 4 bits (used often in computers, e.g. a byte to represent each key on a keyboard)
- Example *RWS*
 - *R* for rain, *W* for wind, *S* for sunny
 - *RWS* = 110 indicates it is raining, with winds, and cloudy (e.g. not sunny)

Positional Notation for Numbers

- Base B number \rightarrow B symbols per digit
 - Base 10 (Decimal): 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
 - Base 2 (binary) 0, 1
- Number representation
 - $d_{N-1}d_{N-2} \dots d_2d_1d_0$ is N digit number
 - 2^{*N*} different numbers can be represented
 - Value $= d_{N-1} \times B^{N-1} + d_{N-2} \times B^{N-2} + \dots + d_1 \times B^1 + d_0 \times B^0$
- Examples
 - (Decimal): 90
 - = $9 \times 10^1 + 0 \times 10^0$
 - (Binary): 1011010
 - = $1 \times 2^{6} + 0 \times 2^{5} + 1 \times 2^{4} + 1 \times 2^{3} + 0 \times 2^{2} + 1 \times 2^{1} + 0 \times 2^{0}$
 - = 64 + 16 + 8 + 2
 - = 90
 - 7 binary digits needed for 2 digit decimal number

Conversion from Decimal to Base B

- Integer conversion is done by repeatedly dividing by the decimal number by base B
 The remainder is a base B digit
 - Continue dividing until quotient equals zero
 - Arrange into digital word from right to left

Conversion from Decimal to Binary

• Convert decimal 343_{10} to binary (base 2)

		Quotient	Remaine	der
343/2	=	171	1	$\rightarrow 101010111_2$
171/2	=	85	1	
85/2	=	42	1	
42/2	=	21	0	Read binary equivalent
21/2	=	10	1	in reverse order
10/2	=	5	0	
5/2	=	2	1	
2/2	=	1	0	
1/2	=	0	1	
			— Stop	when quotient equals zero

Hexadecimal Number: Base 16

- More human readable than binary
- Base with easy conversion to binary
 - Any multiple of 2 base could work (e.g. octal)
- Hexadecimal digits

Decimal	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Binary	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
Hex (16)	0	1	2	3	4	5	6	7	8	9	A	В	С	D	Е	F
octal (8)	0	1	2	3	4	5	6	7								

- 1 hex digit represents 16 decimal values or 4 binary digits
 - Will use Ox to indicate hex digit

Hex/Binary Conversion

Decimal	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
binary	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
hex	0	1	2	3	4	5	6	7	8	9	A	В	С	D	Е	F

- Convert between 4-bits and a hex digit using the conversion table above
- Examples
 - 1010 1100 0101 (binary)
 - $\bullet = 0 \times AC5$
 - 10111 (binary)
 - = 0001 0111 (binary)
 - = 0×17
 - 0x3F9
 - = 0011 1111 1001 (binary)
 - = 11 1111 1001 (binary)

Binary Arithmetic

Addition in binary is the same as with decimal
Only have 2 values (0, 1) in binary

		Sum	Carry
0 + 0	=	0	0
0 + 1	=	1	0
1 + 1	=	0	1
1 + 1 + 1	=	1	1

Signed Numbers

- N bits represents 2^N values
- Unsigned integers
 - **Range** [0, 2^N-1]
- How can negative values be indicated?
 - Use a sign-bit
 - Boolean indicator bit (flag)

Sign and Magnitude

- 16-bit numbers
 - +1 (decimal) = 0000 0000 0000 0001 = 0x0001
 - □ -1 (decimal) = 1000 0000 0000 0001 = 0x8001
- Problems
 - Two zeros
 - 0x0000
 - 0x8000
 - Complicated arithmetic
 - Special steps needed to handle when signs are same or different (must check sign bit)

Ones Complement

- Complement the bits of a number
 - +1 (decimal) = 0000 0000 0000 0001 = 0x0001
 - -1 (decimal) = 1111 1111 1110 = 0xFFFE
- Positive number have leading zeros
- Negative number have leading ones
- Arithmetic not too difficult
- Still have two zeros

Two's Complement

- Subtract large number from a smaller one
 - Borrow from leading zeros
 - Result has leading ones
- Unbalanced representation
 - Leading zeros for positive
 - 2^{N-1} non-negatives
 - Leading ones for negative number
 - 2^{N-1} negative number
 - One zero representation
- First bit is sign-bit (must indicate width)
 - Value = $d_{31} \times -2^{31} + d_{30} \times 2^{30} + \dots + d_1 \times 2^1 + d_0 \times 2^0$

Negative value for sign bit

Binary	Decimal
0011	3
0100	4
1111	-1

Two's Complement Negation

- Shortcut = invert bits and add 1
 - Number + complement = 0xF..F = -1
 - $x + \overline{x} = -1$
 - $\bar{x} + 1 = -x$
- Example
 - *x* 1111 1110
 - \bar{x} 0000 0001
 - $\bar{x} + 1 \quad 0000 \ 0010$

Two's Complement Sign Extension

- Machine's have fixed width (e.g. 32-bits)
 - Real numbers have infinite width (invisible extension)
 - Positive has infinite o's
 - Negative has infinite 1's
- Replicate sign bit (msb) of smaller container to fill new bits in larger container
- Example

1111 1111 1111 1111

Overflow

- Fixed bit width limits number representation
- Occurs if result of arithmetic operation cannot be represented by hardware bits
- Example
 - 8-bit: 127 + 127

Binary	Decimal
0111 1111	127
0111 1111	127
1111 1110	-2 (254)

Two's Complement Subtraction

- Subtraction (x y) can be performed by adding x and the two's complement of y
- Example
 - 8-bit 29 27

Binary	Decimal
0001 1101	29
0001 1011	27
1110 0100	27
1110 0101	$\overline{27} + 1 = -27$
0000 0010	2

Combinatorial Logic Circuits

- Combine logical variable inputs to produce a logic-variable output
- Logic can be specified by enumerating the output for all possible input combinations in a truth table
- Considered memoryless circuits
 - The output at a given time instant are only dependent on the input at the same time instant

Inverter

NOT operation inverts a logic variable
We have seen this as complement already

• NOT(A) = \overline{A}

AND Gate

- Logic gate computes the logical multiplication of input variables
 A B C | D=ABC
 - AND(A, B) = AB

A	В	C = AB
0	0	0
0	1	0
1	0	0
1	1	1

(a) Truth table

(b) Symbol for two-input AND gate Copyright © 2011, Pearson Education, Inc.

A	В	С	D = ABC
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

(a) Truth table

(b) Symbol for three-input AND gate Copyright © 2011, Pearson Education, Inc.

OR Gate

Logic gate computes the logical addition of input variables

$$\circ \operatorname{OR}(A,B) = A + B$$

A	В	C = A + B
0	0	0
0	1	1
1	0	1
1	1	1

(a) Truth table

(b) Symbol for two-input OR gate

22

Copyright $\ensuremath{^\odot}$ 2011, Pearson Education, Inc.

More Logic Gates

- In silicon chips, other gates are simpler to implement
- Buffer = NOT followed by NOT
 - Returns the same value
- NAND = AND followed by NOT
- NOR = OR followed by NOT
- XOR is the exclusive-OR gate
 - $XOR(A, B) = A \oplus B$

Boolean Algebra

- Mathematical theory of logical variables
- Use basic AND, OR, and NOT relationships to prove a Boolean expression
 - Can generate a truth table to specify the output relationship for all possible input values

De Morgan's Laws

 Provides a way to convert an AND relationship into an OR relationship and vice versa

•
$$ABC = \overline{\overline{A} + \overline{B} + \overline{C}}$$

•
$$(A + B + C) = \overline{\overline{A}\overline{B}\overline{C}}$$

- Implications:
 - Any logic function can be implemented using AND gates and inverters
 - Any logic function can be implemented using OR gates and inverters
 - Only need either AND gates or OR gates (not both)

Implementation of Boolean Expressions

- A logical variable can be composed of Boolean relationships
 - AND, OR, NOT, etc.
- Gate level implementation is straightforward
- Example
- $F = A\overline{B}C + ABC + (C + D)(\overline{D} + E)$

Simplifying Boolean Expression

- Find simpler equivalent expressions by manipulation of equation and Boolean relations
- Example
- $F = A\overline{B}C + ABC + (C + D)(\overline{D} + E)$
- $F = A\overline{B}C + ABC + (C\overline{D} + CE + D\overline{D} + DE)$
- $F = A\overline{B}C + ABC + (C\overline{D} + CE + 0 + DE)$
- $F = AC(\overline{B} + B) + (C\overline{D} + CE + 0 + DE)$
- $F = AC(1) + (C\overline{D} + CE + 0 + DE)$
- $F = C(A + \overline{D} + E) + DE$

Comparison of Implementations

• $F = A\overline{B}C + ABC + (C + D)(\overline{D} + E)$

• $F = C(A + \overline{D} + E) + DE$

Synthesis of Logic

- Require methods to convert logic circuit specifications into a practical gate level implementation
 - Often the logic is specified in a natural language
- We will use truth tables to develop Boolean logic expressions that can be implemented with gates

Example Truth Table

- 3 Logical variable input and 1 output
 - Enumerate all possible input values and specify the corresponding output
 - *A*, *B*, *C* input and *D* output

A	В	С	D
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

Sum-of-Products Implementation

- Find all output rows that have a 1 output
 - Determine AND relationship between inputs
- OR the AND terms from each row

Α	В	С	D	AND Term
0	0	0	1	ĀĒĒ
0	0	1	0	
0	1	0	1	ĀBĒ
0	1	1	0	
1	0	0	0	
1	0	1	0	
1	1	0	1	ABĒ
1	1	1	1	ABC

Can this be simplified?

 $D = \bar{A}\bar{B}\bar{C} + \bar{A}B\bar{C} + AB\bar{C} + ABC$

Product-of-Sums Implementation

- Find all output rows that have a o output
 - Determine OR relationship between inputs
- AND the OR terms from each row

Α	В	С	D	OR Term
0	0	0	1	
0	0	1	0	$A + B + \overline{C}$
0	1	0	1	
0	1	1	0	$A + \overline{B} + \overline{C}$
1	0	0	0	$\bar{A} + B + C$
1	0	1	0	$\bar{A} + B + \bar{C}$
1	1	0	1	
1	1	1	1	

 $D = (A + B + \overline{C})(A + \overline{B} + \overline{C})(\overline{A} + B + C)(\overline{A} + B + \overline{C})$