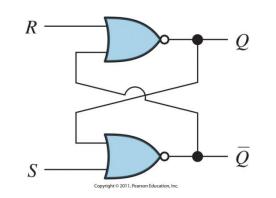
EE292: Fundamentals of ECE

Fall 2012 TTh 10:00-11:15 SEB 1242

Lecture 25 121127

http://www.ee.unlv.edu/~b1morris/ee292/

Outline

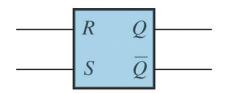

- Review
 - Sequential Logic
- Transistors
- CMOS Logic Gates

Sequential Logic

- Combinatorial logic output is only dependent on input at the given time
- Sequential logic has outputs that are dependent not only on current input but past input as well
 The circuits have "memory"
- Often times sequential circuits use a clock signal to regulate when the output should change
 These are called amplementation singuits
 - These are called synchronous circuits
 - Asynchronous circuits are able to change as soon as inputs change (no clock signal is required)

SR Flip-Flop

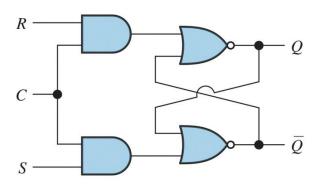
- This is the basic building block for sequential circuits
- A flip-flop has two allowable "states" of operation
 - It is able to store a bit of information
- It is a memory element because it stores a binary value
 - Coupled configuration ensures value *Q* does not change once set



- Set-reset (SR) flip-flop gives inputs to control the stored value Q
 - $S = \text{Set} \rightarrow Q = 1$

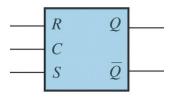
•
$$R = \text{Reset} \rightarrow Q = 0$$

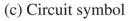
R	S	Q_n
0	0	Q_{n-1}
0	1	1
1	0	0
1	1	Not allowed


(a) Truth table

(b) Circuit symbol Copyright © 2011, Pearson Education, Inc.

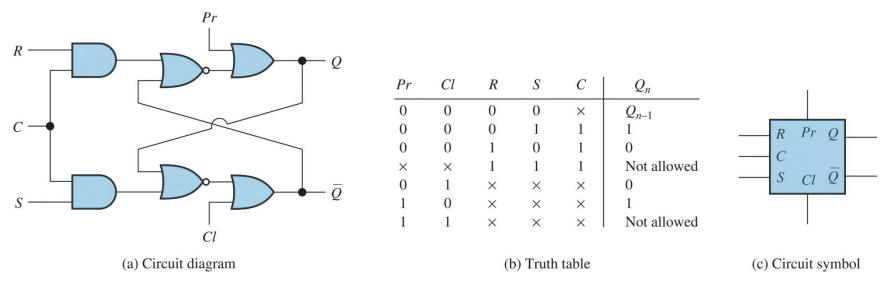
Clocked SR Flip-Flop


- Create a synchronous SR flipflop to control the time when the output *Q* is allowed to change
- Add a clock signal to the flipflop
 - Only when the clock is high is the output allowed to change

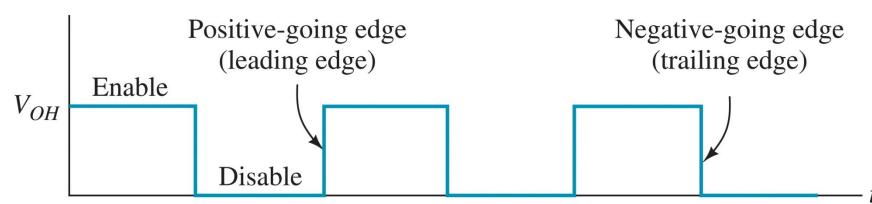


(a) Circuit diagram

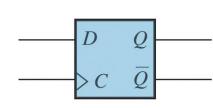
R	S	C	Q_n
0	0	Х	Q_{n-1}
0	1	1	1
1	0	1	0
1	1	1	Not allowed
×	×	0	Q_{n-1}
(b) Truth table			


• AND gates prevent *R* or *S* from reaching the flip-flop unless the clock *C* is high

Clocked SR with Asynchronous Input


• Clocked set and reset functionality with asynchronous preset (*Pr*) and clear (*Cl*)

- Add OR gates at QQ
 outputs to automatically set or reset state
 - Notice that the clocked *S* and *R* cannot be high at the same time and neither can the asynchronous preset *Pr* and clear *Cl*


Edge-Triggered Circuits

- The clocked SR flip-flop uses the clock signal as an enable signal
 - When the clock is high the circuit is allowed to change
- Edge-triggered circuits only respond at the time when the clock changes between low and high
 - Positive-edge-triggered low to high transition
 - Known as the leading edge
 - Negative-edge-triggered high to low transition
 - Known as the training edge

D Flip-Flop

• The delay (D) flip-flop is edge-triggered to take make the output the same as the input right before the clock transition

(a) Circuit symbol

С	D	Q_n
0	×	Q_{n-1}
1	×	Q_{n-1}
\uparrow	0	0
\uparrow	1	1

- (b) Truth table indicates a transition from low to high
- The triangle by the clock signal *C* indicates it is positive-edge-triggered
 Up arrow in truth table indicates rising edge

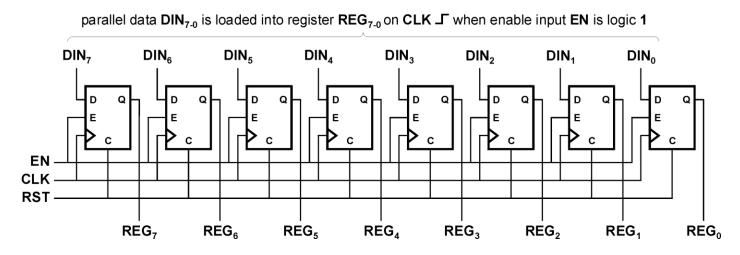
JK Flip-Flop

- Similar operation to the SR flip-flop
 - Except when J and K are both high, the output state Q will toggle

C

	J	Q	
—0	> C		
	K	\overline{Q}	

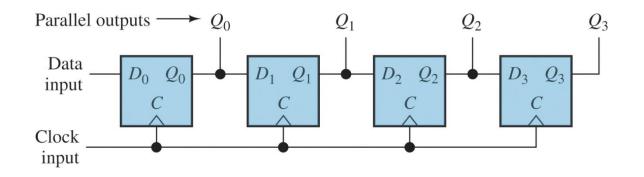
J	K	Q_n	Comment
×	×	Q_{n-1}	Memory
×	×	Q_{n-1}	Memory
0	0	Q_{n-1}	Memory
0	1	0	Reset
1	0	1	Set
1	1	\overline{Q}_{n-1}	Toggle


(a) Circuit symbol

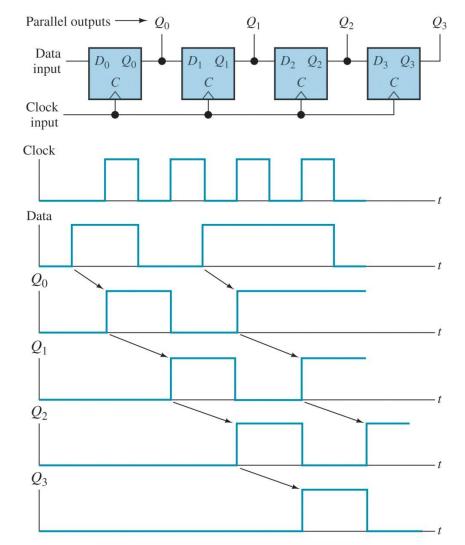
(b) Truth tableindicates a transitionfrom low to high

Notice this is a negative-edge-triggered
Triangle with a preceding invert bubble

Registers

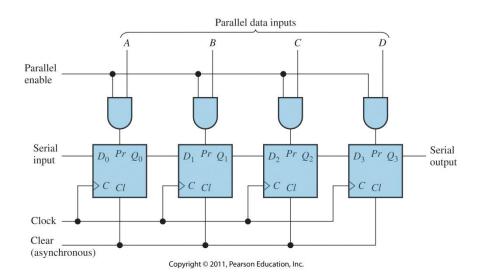

- A flip-flop is able to store a single bit
- A register is an array of flip-flops used to store a digital word
 - A hexadecimal number requires 4 bits so 4 flipflops are required to internally store the hex number

http://enpub.fulton.asu.edu/cse517/Lab3.html

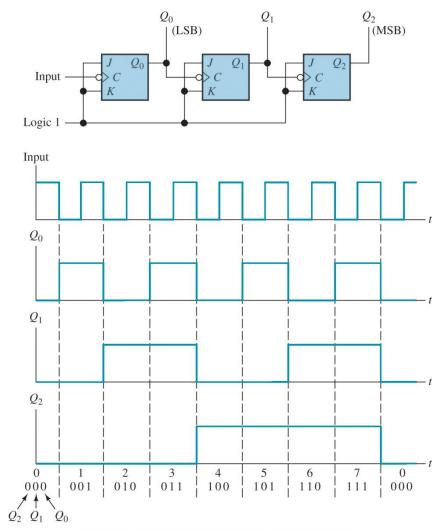

Serial-In Parallel-Out Shift Register

- Serial-in implies bit are presented to the register one at a time (in a sequence)
- Parallel-out implies the contents of the register (all the bits) can be accessed at the same time

Serial-In Parallel-Out Operation


- Data is presented to a single input at the "front" of the word
- At each clock transition the data is shifted from one flip-flop to the next
- After 4 clock cycles, the full word is available to be read in the register

Copyright © 2011, Pearson Education, Inc.


Parallel-In Serial Out Shift Register

- Parallel data is provided as input and the output is serial data
 - E.g. transmission of data on a telephone line
- The register can be cleared asynchronously to initialize the register
- Data is set on inputs and a parallel enable signal asynchronously loads the data
- The output is serially transmitted from the last flipflop stage

Counters

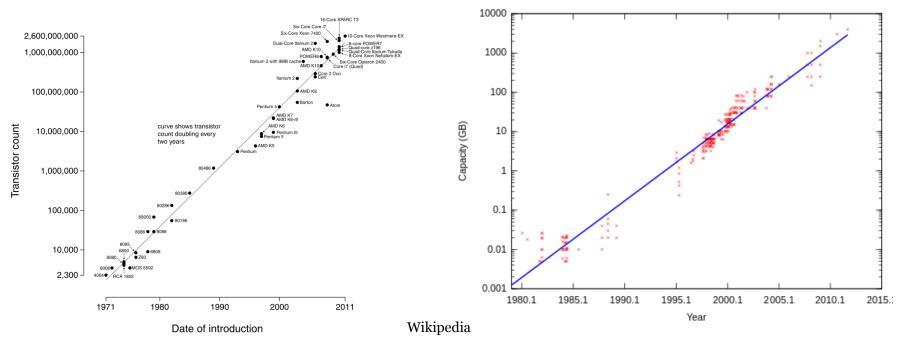
- Circuit used to count the pulses in an input signal
 - Often the number of clocks are the signal of interest
- Inputs of JK flip-flop are tied together and high
 - Causes the output state to toggle with each clock cycle
 - Notice this is negative-edgetriggered
- Output of one JK flip-flop is the clock input of the next stage
 - The word Q₂Q₁Q₀ is the binary representation of the count

Copyright © 2011, Pearson Education, Inc.

Minimization of Logic Circuits

- We saw you can minimize logic variable representations using Boolean algebra but this can be tedious and prone to error
- The Karnaugh map (K-map) (Ch 7.5) is a principled method for determining the minimum representation
 - This method is usually only practical for 4 variables (maybe 5 or 6)
 - We will not cover this in class but it is an interesting read

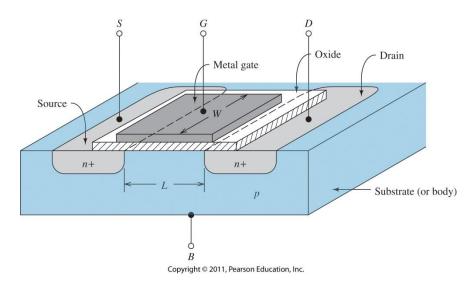
Transistor


- Very important device used in amplifiers and logic gates
- Metal-oxide-semiconductor field-effect transistor (MOSFET) is the key device that has propelled our rapid technology growth
 - Can be easily fabricated on silicon wafers
 - Small area which enables large numbers of transistors on a chip and faster processing
 - Cheap
 - Insulated-gate field-effect transistor (IGFET) is the more general term for today's transistors

Moore's Law

 Observation by Intel cofounder Gordon E. Moore that the number of transistors on an integrated circuit doubles almost every two years (18 months)

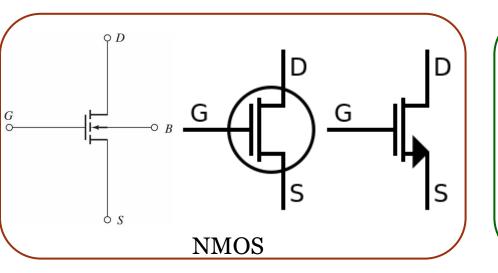
Microprocessor Transistor Counts 1971-2011 & Moore's Law

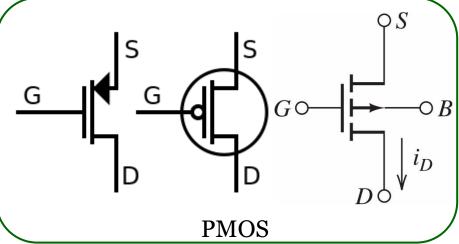

- This exponential growth trend is also found in many areas of digital electronics
 - Processing speed, memory capacity, pixels in a digital camera, etc.

Physical Transistor

- A MOSFET transistor is a 4 terminal device that is fabricated on the surface of a silicon wafer
- 4 terminals
 - (D)rain
 - (G)ate
 - (S)ource
 - (B)ody or substrate
- Body is often tied to the source to make a 3 terminal device

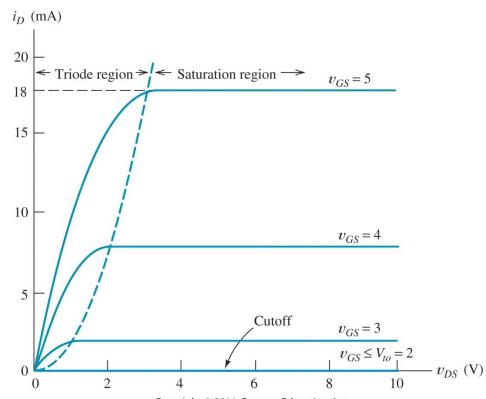
- When voltage is applied on the gate and voltage is applied between the drain and source
 - Current flows into the drain and out the source terminal
 - Amount of current is controlled by the gate voltage




NMOS and PMOS Transistors

• NMOS

- n-channel device → electrons carry charge into device
- Current flows in from drain (out of source)
- Circuit symbol
 - Body arrow pointing to gate
 - Arrow pointing out from source


- PMOS
 - p-channel device → "holes" carry positive charge
 - Current flows out of drain (in from source)
- Circuit symbol
 - Body arrow pointing away from gate
 - Arrow pointing in from source
 - Invert bubble on the gate

Transistor Operation

- Cutoff region
 - No drain current when gate voltage is below a threshold
 - $i_D = 0$ for $v_{GS} \le V_{to}$
- Triode (linear) region
 - Transistor behaves like a resistor
 - $v_{DS} < v_{GS} V_{to}$ and $v_{GS} \ge V_{to}$
- Saturation region
 - Constant current operation
 - $v_{DS} \ge v_{GS} V_{to}$ and $v_{GS} \ge V_{to}$
- Above definitions for NMOS, PMOS has the same I/V characteristics but the signs of the voltages are inverted

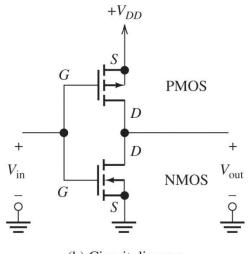
Copyright © 2011, Pearson Education, Inc.

MOSFET Summary

Table 12.1. MOSFET Summary

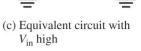
	NMOS	PMOS
Circuit symbol	$G \circ - \downarrow i_D \\ \circ B \\ \circ S$	$G \circ - \bigvee_{D \circ}^{O S} B$
KP (typical value)	$50 \mu\text{A/V}^2$	$25 \mu\text{A/V}^2$
K	(1/2) KP (W/L)	(1/2) KP (W/L)
V_{to} (typical value)	+1 V	-1 V
Cutoff region	$ \begin{aligned} v_{GS} &\leq V_{to} \\ i_D &= 0 \end{aligned} $	$ \begin{aligned} v_{GS} &\geq V_{to} \\ i_D &= 0 \end{aligned} $
Triode region	$v_{GS} \ge V_{to} \text{ and } 0 \le v_{DS} \le v_{GS} - V_{to}$ $i_D = K [2(v_{GS} - V_{to}) v_{DS} - v_{DS}^2]$	$v_{GS} \le V_{to} \text{ and } 0 \ge v_{DS} \ge v_{GS} - V_{to}$ $i_D = K [2(v_{GS} - V_{to}) v_{DS} - v_{DS}^2]$
Saturation region	$v_{GS} \ge V_{to} \text{ and } v_{DS} \ge v_{GS} - V_{to}$ $i_D = K (v_{GS} - V_{to})^2$	$v_{GS} \le V_{to}$ and $v_{DS} \le v_{GS} - V_{to}$ $i_D = K (v_{GS} - V_{to})^2$
v_{DS} and v_{GS}	Normally assume positive values	Normally assume negative values

MOSFETs for Amplifiers


- Must bias the FET into a particular region of operation
 - DC bias of circuit
- Small signal analysis is used to describe how current and voltage change around the DC operating point
 - Used to design amplifiers that magnify small changes of input voltage (current) into large changes in output voltage (current)
- We will not study how to do this in our class

CMOS Logic Gates

- Logic gates composed of complementary metaloxide semiconductor (CMOS) transistors
 Both NMOS and PMOS transistors utilized in
 - Both NMOS and PMOS transistors utilized in circuits
- With CMOS it is easy to build fundamental gates
 E.g. NAND and NOR
- MOS operation is simplified with logic levels
 The transistor is a voltage controlled switch
 - Either in cutoff or saturation
 - Cutoff = "off" = open switch
 - Saturation = "on" = closed switch


CMOS Inverter

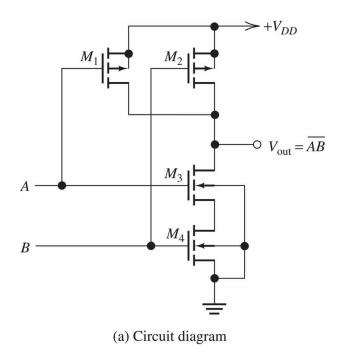
- Stack a PMOS transistor above • a NMOS transistor
- Tie gates together for the input

(b) Circuit diagram

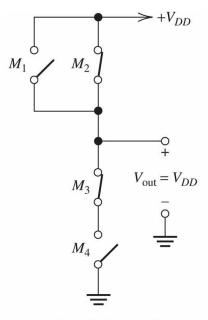
- V_{in} high $+V_{DD}$ V_{GS} NMOS: high \rightarrow "on" PMOS V_{GS} PMOS: low \rightarrow "off" $V_{\rm out} = 0$ NMOS
 - V_{out} is low Connection to ground

 V_{in} low

 V_{GS} NMOS: low \rightarrow "off" $+V_{DD}$


 V_{GS} PMOS: high \rightarrow "on"

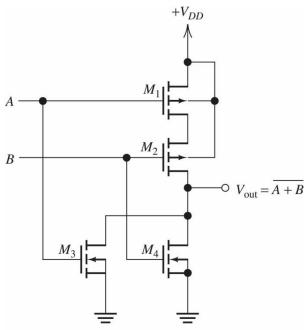
V_{out} is high


PMOS $V_{\rm out} = V_{DD}$ NMOS Connection to supply (d) Equivalent circuit with $V_{\rm in}$ low

CMOS NAND Gate

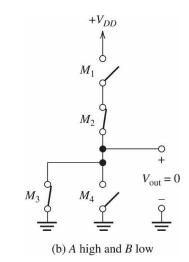
- Parallel PMOS gates
- Stacked NMOS gates

- A high and B low
 - NMOS on for high
 - PMOS on for low



⁽b) A high and B low

Only PMOS path connected *V*_{out} is high


CMOS NOR Gate

- Stacked PMOS gates
- Parallel NMOS gates

Copyright © 2011, Pearson Education, Inc.

- A high and B low
 - NMOS on for high
 - PMOS on for low

Only NMOS path connected *V*_{out} is low