EE292: Fundamentals of ECE

Fall 2012 TTh 10:00-11:15 SEB 1242

Lecture 26 121128

http://www.ee.unlv.edu/~b1morris/ee292/

Outline

- Review
 - Transistors
- CMOS Logic Gates
- Project Info
 - Website
 - Arduino

Transistor

- Very important device used in amplifiers and logic gates
- Metal-oxide-semiconductor field-effect transistor (MOSFET) is the key device that has propelled our rapid technology growth
 - Can be easily fabricated on silicon wafers
 - Small area which enables large numbers of transistors on a chip and faster processing
 - Cheap
 - Insulated-gate field-effect transistor (IGFET) is the more general term for today's transistors

Physical Transistor

- A MOSFET transistor is a 4 terminal device that is fabricated on the surface of a silicon wafer
- 4 terminals
 - (D)rain
 - (G)ate
 - (S)ource
 - (B)ody or substrate
- Body is often tied to the source to make a 3 terminal device

- When voltage is applied on the gate and voltage is applied between the drain and source
 - Current flows into the drain and out the source terminal
 - Amount of current is controlled by the gate voltage

NMOS and PMOS Transistors

• NMOS

- n-channel device → electrons carry charge into device
- Current flows in from drain (out of source)
- Circuit symbol
 - Body arrow pointing to gate
 - Arrow pointing out from source

- PMOS
 - p-channel device → "holes" carry positive charge
 - Current flows out of drain (in from source)
- Circuit symbol
 - Body arrow pointing away from gate
 - Arrow pointing in from source
 - Invert bubble on the gate

Transistor Operation

- Cutoff region
 - No drain current when gate voltage is below a threshold
 - $i_D = 0$ for $v_{GS} \le V_{to}$
- Triode (linear) region
 - Transistor behaves like a resistor
 - $v_{DS} < v_{GS} V_{to}$ and $v_{GS} \ge V_{to}$
- Saturation region
 - Constant current operation
 - $v_{DS} \ge v_{GS} V_{to}$ and $v_{GS} \ge V_{to}$
- Above definitions for NMOS, PMOS has the same I/V characteristics but the signs of the voltages are inverted

Copyright © 2011, Pearson Education, Inc.

MOSFET Summary

Table 12.1. MOSFET Summary

	NMOS	PMOS
Circuit symbol	$G \circ - \downarrow i_D \\ \circ B \\ \circ S$	$G \circ - \bigvee_{D \circ}^{\circ S} B$
KP (typical value)	$50 \mu\text{A/V}^2$	$25 \mu\text{A/V}^2$
K	(1/2) KP (W/L)	(1/2) KP (W/L)
V_{to} (typical value)	+1 V	-1 V
Cutoff region	$ \begin{aligned} v_{GS} &\leq V_{to} \\ i_D &= 0 \end{aligned} $	
Triode region	$v_{GS} \ge V_{to} \text{ and } 0 \le v_{DS} \le v_{GS} - V_{to}$ $i_D = K [2(v_{GS} - V_{to}) v_{DS} - v_{DS}^2]$	$v_{GS} \le V_{to} \text{ and } 0 \ge v_{DS} \ge v_{GS} - V_{to}$ $i_D = K [2(v_{GS} - V_{to}) v_{DS} - v_{DS}^2]$
Saturation region	$v_{GS} \ge V_{to} \text{ and } v_{DS} \ge v_{GS} - V_{to}$ $i_D = K (v_{GS} - V_{to})^2$	$v_{GS} \le V_{to}$ and $v_{DS} \le v_{GS} - V_{to}$ $i_D = K (v_{GS} - V_{to})^2$
v_{DS} and v_{GS}	Normally assume positive values	Normally assume negative values

CMOS Logic Gates

- Logic gates composed of complementary metaloxide semiconductor (CMOS) transistors
 - Both NMOS and PMOS transistors utilized in circuits
- With CMOS it is easy to build fundamental gates
 E.g. NAND and NOR
- MOS operation is simplified with logic levels
 - The transistor is a voltage controlled switch
 - Either in cutoff or saturation
 - Cutoff = "off" = open switch
 - NMOS gate voltage low, PMOS gate voltage high
 - Saturation = "on" = closed switch
 - NMOS gate voltage high, PMOS gate voltage low

CMOS Inverter

- Stack a PMOS transistor above • a NMOS transistor
- Tie gates together for the input

(b) Circuit diagram

- V_{in} high $+V_{DD}$ V_{GS} NMOS: high \rightarrow "on" PMOS V_{GS} PMOS: low \rightarrow "off" $V_{\rm out} = 0$ NMOS V_{out} is low
 - Connection to ground

 V_{in} low

 V_{GS} NMOS: low \rightarrow "off" + V_{DD}

 V_{GS} PMOS: high \rightarrow "on"

V_{out} is high

PMOS $V_{\rm out} = V_{DD}$ NMOS Connection to supply (d) Equivalent circuit with $V_{\rm in}$ low

CMOS NAND Gate

- Parallel PMOS gates
- Stacked NMOS gates

- A high and B low
 - NMOS on for high
 - PMOS on for low

(b) A high and B low

Only PMOS path connected *V*_{out} is high

CMOS NOR Gate

- Stacked PMOS gates
- Parallel NMOS gates

Copyright © 2011, Pearson Education, Inc.

- A high and B low
 - NMOS on for high
 - PMOS on for low

Only NMOS path connected *V*_{out} is low