EE292: Fundamentals of ECE

Fall 2012 TTh 10:00-11:15 SEB 1242

Lecture 27 121101

http://www.ee.unlv.edu/~b1morris/ee292/

Final Exam Details

- Tuesday 12/11 at 10:10 am
- Exam is inclusive of the entire course
 Extra emphasis on untested material
- No Calculators
- You are allowed 2 pages of handwritten notes

New Material

- Chapter 7 Digital Logic
 - Number representation
 - 2's complement arithmetic
 - Combinatorial Logic
 - Basic gates (AND, OR, NOT)
 - Truth table
 - Boolean algebra
 - De Morgan's Laws
 - Synthesis of logic (SOP, POS)
 - Sequential Logic
 - Flip-flops (SR, D, JK, clocked and edge triggered)
 - Registers (digital word representation, shift-register)
- Chapter 12 Transistors
 - Operating modes (NMOS, PMOS)
 - CMOS logic gates

Midterm 2

- Chapter 10 Diodes
 Ideal and Offset Model
- Chapter 4 Transient Analysis
 - Steady-State Analysis
 - 1st-Order Circuits
- Chapter 5 Steady-State Sinusoidal Analysis
 - RMS Values
 - Phasors
 - Complex Impedance
 - Circuit Analysis with Complex Impedance

Midterm 1

- Chapter 1 Intro to Circuits
 - Current, voltage, power, energy
 - KCL, KVL
 - Ohm's Law
- Chapter 2 Resistive Circuits
 - Series/parallel resistance
 - Voltage/current divider
 - Node-voltage (super nodes)
 - Mesh-current (super mesh)
 - Superposition
 - Thevenin and Norton equivalents
- Chapter 3 Inductance and Capacitance
 - IV relationships, power/energy
 - Series and parallel equivalents

Positional Notation for Numbers

- Base B number \rightarrow B symbols per digit
 - Base 10 (Decimal): 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
 - Base 2 (binary) 0, 1
- Number representation
 - $d_{N-1}d_{N-2} \dots d_2d_1d_0$ is N digit number
 - 2^{*N*} different numbers can be represented
 - Value $= d_{N-1} \times B^{N-1} + d_{N-2} \times B^{N-2} + \dots + d_1 \times B^1 + d_0 \times B^0$
- Examples
 - (Decimal): 90
 - = $9 \times 10^1 + 0 \times 10^0$
 - (Binary): 1011010
 - = $1 \times 2^{6} + 0 \times 2^{5} + 1 \times 2^{4} + 1 \times 2^{3} + 0 \times 2^{2} + 1 \times 2^{1} + 0 \times 2^{0}$
 - = 64 + 16 + 8 + 2
 - = 90
 - 7 binary digits needed for 2 digit decimal number

Conversion from Decimal to Base B

- Integer conversion is done by repeatedly dividing by the decimal number by base B
 The remainder is a base B digit
 - Continue dividing until quotient equals zero
 - Arrange into digital word from right to left
- For B = 2^k convert to binary and group digits to form base B number

Decimal	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Binary	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
Hex (16)	0	1	2	3	4	5	6	7	8	9	A	В	С	D	Е	F
octal (8)	0	1	2	3	4	5	6	7								

Binary Arithmetic

Addition in binary is the same as with decimal
Only have 2 values (0, 1) in binary

		Sum	Carry
0 + 0	=	0	0
0 + 1	=	1	0
1 + 1	=	0	1
1 + 1 + 1	=	1	1

• 2's complement for subtraction

$$-x = \bar{x} + 1$$

Basic Logic Gates

- Inverter NOT operation or complement of a variable
 - NOT(A) = \overline{A}
- AND computes the logical multiplication of input variables

•
$$AND(A, B) = AB$$

A

0

0

1

1

(b) Symbol for an inverter Copyright © 2011, Pearson Education, Inc.

Copyright © 2011, Pearson Education, Inc.

- OR computes the logical addition of input variables
 - $\circ \quad \mathrm{OR}(A,B) = A + B$

Boolean Algebra

- Mathematical theory of logical variables
- Use basic AND, OR, and NOT relationships to prove a Boolean expression
 - Can generate a truth table to specify the output relationship for all possible input values
- De Morgan's Laws
 - Provides a way to convert an AND relationship into an OR relationship and vice versa

•
$$ABC = \overline{\overline{A} + \overline{B} + \overline{C}}$$

$$(A + B + C) = \overline{\overline{A}\overline{B}\overline{C}}$$

Implementation of Boolean Expressions

- A logical variable can be composed of Boolean relationships
 - AND, OR, NOT, etc.
- Gate level implementation is straightforward
- Example
- $F = A\overline{B}C + ABC + (C + D)(\overline{D} + E)$

Simplifying Boolean Expression

- Find simpler equivalent expressions by manipulation of equation and Boolean relations
- Example
- $F = A\overline{B}C + ABC + (C + D)(\overline{D} + E)$
- $F = A\overline{B}C + ABC + (C\overline{D} + CE + D\overline{D} + DE)$
- $F = A\overline{B}C + ABC + (C\overline{D} + CE + 0 + DE)$
- $F = AC(\overline{B} + B) + (C\overline{D} + CE + 0 + DE)$
- $F = AC(1) + (C\overline{D} + CE + 0 + DE)$
- $F = C(A + \overline{D} + E) + DE$

Sum-of-Products Implementation

- Find all output rows that have a 1 output
 - Determine AND relationship between inputs
- OR the AND terms from each row

Α	В	С	D	AND Term
0	0	0	1	ĀĒĒ
0	0	1	0	
0	1	0	1	ĀBĒ
0	1	1	0	
1	0	0	0	
1	0	1	0	
1	1	0	1	ABĒ
1	1	1	1	ABC

 $D = \bar{A}\bar{B}\bar{C} + \bar{A}B\bar{C} + AB\bar{C} + ABC$

Product-of-Sums Implementation

- Find all output rows that have a o output
 - Determine OR relationship between inputs
- AND the OR terms from each row

Α	В	С	D	OR Term
0	0	0	1	
0	0	1	0	$A + B + \overline{C}$
0	1	0	1	
0	1	1	0	$A + \overline{B} + \overline{C}$
1	0	0	0	$\bar{A} + B + C$
1	0	1	0	$\bar{A} + B + \bar{C}$
1	1	0	1	
1	1	1	1	

 $D = (A + B + \overline{C})(A + \overline{B} + \overline{C})(\overline{A} + B + C)(\overline{A} + B + \overline{C})$

Sequential Logic

- Combinatorial logic output is only dependent on input at the given time
- Sequential logic has outputs that are dependent not only on current input but past input as well
 The circuits have "memory"
- Often times sequential circuits use a clock signal to regulate when the output should change
 These are called amplementation singuits
 - These are called synchronous circuits
 - Asynchronous circuits are able to change as soon as inputs change (no clock signal is required)

Clocked SR with Asynchronous Input

• Clocked set and reset functionality with asynchronous preset (*Pr*) and clear (*Cl*)

- Add OR gates at QQ
 outputs to automatically set or reset state
 - Notice that the clocked *S* and *R* cannot be high at the same time and neither can the asynchronous preset *Pr* and clear *Cl*

Edge-Triggered Circuits

- The clocked SR flip-flop uses the clock signal as an enable signal
 - When the clock is high the circuit is allowed to change
- Edge-triggered circuits only respond at the time when the clock changes between low and high
 - Positive-edge-triggered low to high transition
 - Known as the leading edge
 - Negative-edge-triggered high to low transition
 - Known as the training edge

D Flip-Flop

• The delay (D) flip-flop is edge-triggered to take make the output the same as the input right before the clock transition

(a) Circuit symbol

С	D	Q_n
0	×	Q_{n-1}
1	×	Q_{n-1}
\uparrow	0	0
\uparrow	1	1

- (b) Truth table indicates a transition from low to high
- The triangle by the clock signal *C* indicates it is positive-edge-triggered
 Up arrow in truth table indicates rising edge

JK Flip-Flop

- Similar operation to the SR flip-flop
 - Except when J and K are both high, the output state Q will toggle

			0
			1
	J	Q	 \downarrow
0	C		\downarrow
	Κ	\overline{Q}	 ↓ ↓
			\mathbf{v}

J	K	Q_n	Commen
×	×	Q_{n-1}	Memory
×	×	Q_{n-1}	Memory
0	0	Q_{n-1}	Memory
0	1	0	Reset
1	0	1	Set
1	1	\overline{Q}_{n-1}	Toggle

(a) Circuit symbol

(b) Truth tableindicates a transitionfrom low to high

Notice this is a negative-edge-triggered
Triangle with a preceding invert bubble

Registers

- A flip-flop is able to store a single bit
- A register is an array of flip-flops used to store a digital word
 - A hexadecimal number requires 4 bits so 4 flipflops are required to internally store the hex number

http://enpub.fulton.asu.edu/cse517/Lab3.html

NMOS and PMOS Transistors

• NMOS

- n-channel device → electrons carry charge into device
- Current flows in from drain (out of source)
- Circuit symbol
 - Body arrow pointing to gate
 - Arrow pointing out from source

- PMOS
 - p-channel device → "holes" carry positive charge
 - Current flows out of drain (in from source)
- Circuit symbol
 - Body arrow pointing away from gate
 - Arrow pointing in from source
 - Invert bubble on the gate

Transistor Operation

- Cutoff region
 - No drain current when gate voltage is below a threshold
 - $i_D = 0$ for $v_{GS} \le V_{to}$
- Triode (linear) region
 - Transistor behaves like a resistor
 - $v_{DS} < v_{GS} V_{to}$ and $v_{GS} \ge V_{to}$
- Saturation region
 - Constant current operation
 - $v_{DS} \ge v_{GS} V_{to}$ and $v_{GS} \ge V_{to}$
- Above definitions for NMOS, PMOS has the same I/V characteristics but the signs of the voltages are inverted

Copyright © 2011, Pearson Education, Inc.

MOSFET Summary

Table 12.1. MOSFET Summary

	NMOS	PMOS
Circuit symbol	$G \circ - \downarrow i_D \\ \circ B \\ \circ S$	$G \circ - \bigvee_{D \circ}^{\circ S} \circ B$
KP (typical value)	$50 \mu\text{A/V}^2$	$25 \mu\text{A/V}^2$
K	(1/2) KP (W/L)	(1/2) KP (W/L)
V_{to} (typical value)	+1 V	-1 V
Cutoff region	$ \begin{aligned} v_{GS} &\leq V_{to} \\ i_D &= 0 \end{aligned} $	$ \begin{aligned} v_{GS} &\geq V_{to} \\ i_D &= 0 \end{aligned} $
Triode region	$v_{GS} \ge V_{to} \text{ and } 0 \le v_{DS} \le v_{GS} - V_{to}$ $i_D = K [2(v_{GS} - V_{to}) v_{DS} - v_{DS}^2]$	$v_{GS} \le V_{to} \text{ and } 0 \ge v_{DS} \ge v_{GS} - V_{to}$ $i_D = K [2(v_{GS} - V_{to}) v_{DS} - v_{DS}^2]$
Saturation region	$v_{GS} \ge V_{to} \text{ and } v_{DS} \ge v_{GS} - V_{to}$ $i_D = K (v_{GS} - V_{to})^2$	$v_{GS} \le V_{to} \text{ and } v_{DS} \le v_{GS} - V_{to}$ $i_D = K (v_{GS} - V_{to})^2$
v_{DS} and v_{GS}	Normally assume positive values	Normally assume negative values

CMOS Logic Gates

- Logic gates composed of complementary metaloxide semiconductor (CMOS) transistors
 - Both NMOS and PMOS transistors utilized in circuits
- With CMOS it is easy to build fundamental gates
 E.g. NAND and NOR
- MOS operation is simplified with logic levels
 - The transistor is a voltage controlled switch
 - Either in cutoff or saturation
 - Cutoff = "off" = open switch
 - NMOS gate voltage low, PMOS gate voltage high
 - Saturation = "on" = closed switch
 - NMOS gate voltage high, PMOS gate voltage low

Diode Voltage/Current Characteristics

- Forward Bias ("On")
 - Positive voltage v_D supports large currents
 - Modeled as a battery (0.7 V for offset model)
- Reverse Bias ("Off")
 - Negative voltage → no current
 - Modeled as open circuit
- Reverse-Breakdown
 - Large negative voltage supports large negative currents
 - Similar operation as for forward bias

(a) Circuit symbol

Diode Models

- Ideal model simple
- Offset model more realistic
- Two state model
- "On" State
 - Forward operation
 - Diode conducts current
 - Ideal model \rightarrow short circuit
 - Offset model \rightarrow battery
- "Off" State
 - Reverse biased
 - No current through diode → open circuit

Circuit Analysis with Diodes

- Assume state {on, off} for each ideal diode and check if the initial guess was correct
 - *i_d* > 0 positive for "on" diode
 - $v_d < v_{on}$ for "off" diode
 - These imply a correct guess
 - Otherwise adjust guess and try again
- Exhaustive search is daunting
 - 2^n different combinations for *n* diodes
- Will require experience to make correct guess

DC Steady-State Analysis

- Analysis of C, L circuits in DC operation
 Steady-state non-changing sources
- Capacitors i = C dv/dt
 Voltage is constant → no current → open circuit
- Inductors $v = L \frac{di}{dt}$
 - Current is constant \rightarrow no voltage \rightarrow short circuit
- Use steady-state analysis to find initial and final conditions for transients

General 1st-Order Solution

- Both the current and voltage in an 1st-order circuit has an exponential form
 - RC and LR circuits
- The general solution for current/voltage is:

$$x(t) = x_f + \left[x(t_0^+) - x_f\right] e^{-(t-t_0)/\tau}$$

- x represents current or voltage
- t_0 represents time when source switches
- *x_f* final (asymptotic) value of current/voltage
- τ time constant (*RC* or $\frac{L}{R}$)
 - Transient is essentially zero after 5τ
- Find values and plug into general solution
 - Steady-state for initial and final values
 - Two-port equivalents for τ

Example Two-Port Equivalent

- Given a circuit with a parallel capacitor and inductor
 - Use Norton equivalent to make a parallel circuit equivalent
- Remember:
 - Capacitors add in parallel
 - Inductors add in series

RC/RL Circuits with General Sources

•
$$RC \frac{dv_c(t)}{dt} + v_c(t) = v_s(t)$$

• The solution is a differential equation of the form

$$\tau \frac{dx(t)}{dt} + x(t) = f(t)$$

- Where f(t) the forcing function
- The full solution to the diff equation is composed of two terms

•
$$x(t) = x_p(t) + x_h(t)$$

- $x_p(t)$ is the particular solution
 - The response to the particular forcing function
 - *x_p(t)* will be of the same functional form as the forcing function

•
$$f(t) = e^{st} \to x_p(t) = Ae^{st}$$

•
$$f(t) = \cos(\omega t) \rightarrow x_p(t) =$$

 $A\cos(\omega t) + B\sin(\omega t)$

- $x_h(t)$ is the homogeneous solution
 - "Natural" solution that is consistent with the differential equation for f(t) = 0
 - The response to any initial conditions of the circuit
 - Solution of form

•
$$x_h(t) = Ke^{-t/t}$$

Second-Order Circuits

- RLC circuits contain two energy storage elements
 This regults in a differential equation of second order
 - This results in a differential equation of second order (has a second derivative term)
- Use circuit analysis techniques to develop a general 2nd-order differential equation of the form

$$\frac{di^2(t)}{dt^2} + 2\alpha \frac{di(t)}{dt} + \omega_0^2 i(t) = f(t)$$

- Use KVL, KCL and I/V characteristics of inductance and capacitance to put equation into standard form
- Must identify α , ω_0 , f(t)

Useful I/V Relationships

Inductor

•
$$v(t) = L \frac{di(t)}{dt}$$

• $i(t) = \frac{1}{L} \int_{t_0}^t v(t) dt + i(t_0)$

Capacitor

•
$$i(t) = C \frac{dv(t)}{dt}$$

• $v(t) = \frac{1}{C} \int_{t_0}^t i(t) dt + v(t_0)$

Steady-State Sinusoidal Analysis

- In Transient analysis, we saw response of circuit network had two parts
 - $x(t) = x_p(t) + x_h(t)$
- Natural response x_h(t) had an exponential form that decays to zero
- Forced response x_p(t) was the same form as forcing function
 - Sinusoidal source \rightarrow sinusoidal output
 - Output persists with the source → at steady-state there is no transient so it is important to study the sinusoid response

Sinusoidal Currents and Voltages

- Sinusoidal voltage
 - $v(t) = V_m \cos(\omega_0 t + \theta)$
 - V_m peak value of voltage
 - ω₀ angular frequency in radians/sec
 - θ phase angle in radians
- This is a periodic signal described by
 - T the period in seconds
 - $\omega_0 = \frac{2\pi}{T}$
 - *f* the frequency in Hz = 1/sec

•
$$\omega_0 = 2\pi f$$

Root-Mean-Square Values

•
$$P_{avg} = \frac{\left[\sqrt{\frac{1}{T}\int_0^T v^2(t)dt}\right]^2}{R}$$

• Define rms voltage

•
$$V_{rms} = \sqrt{\frac{1}{T} \int_0^T v^2(t) dt}$$

 $P_{avg} = \frac{V_{rms}^2}{R}$

• Similarly define rms current

$$I_{rms} = \sqrt{\frac{1}{T} \int_0^T i^2(t) dt}$$
$$P_{avg} = I_{rms}^2 R$$

RMS Value of a Sinusoid

• Given a sinusoidal source

•
$$v(t) = V_m \cos(\omega_0 t + \theta)$$

•
$$V_{rms} = \sqrt{\frac{1}{T}} \int_0^T v^2(t) dt$$

$$V_{rms} = \sqrt{\frac{1}{T}} \int_0^T V_m^2 \cos^2(\omega_0 t + \theta) dt$$

using $\cos^2(x) = 1/2 + 1/2 \cos(2x)$
$$= \sqrt{\frac{V_m^2}{2T}} \int_0^T [1 + \cos(2\omega_0 t + 2\theta)] dt$$

$$\vdots$$

$$= \frac{V_m}{\sqrt{2}}$$

- The rms value is an "effective" value for the signal
 - E.g. in homes we have 60Hz
 115 V rms power

$$V_m = \sqrt{2} \cdot V_{rms} = 163 V$$

Conversion Between Forms

- Rectangular to polar form
- $r^2 = x^2 + y^2$

• $\tan\theta = \frac{y}{x}$

- Polar to rectangular form
- $x = r \cos \theta$
- $y = r \sin \theta$
- Convert to polar form
- z = 4 j4
- $r = \sqrt{4^2 + 4^2} = 4\sqrt{2}$
- $\theta = \arctan\left(\frac{y}{x}\right) =$ arctan(-1) = $-\frac{\pi}{4}$ • $z = 4\sqrt{2}e^{-j\pi/4}$

x (degrees)	x (radians)	$\sin(x)$	cos(x)	tan(x)
0	0	0	1	0
15	$\frac{\pi}{12}$	$\frac{-1+\sqrt{3}}{2\sqrt{2}}$	$\frac{1+\sqrt{3}}{2\sqrt{2}}$	$2 - \sqrt{3}$
30	$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{3}}$
45	$\frac{\pi}{4}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$	1
60	$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$
75	$\frac{5\pi}{12}$	$\frac{1+\sqrt{3}}{2\sqrt{2}}$	$\frac{-1+\sqrt{3}}{2\sqrt{2}}$	$2 + \sqrt{3}$
90	$\frac{\pi}{2}$	1	0	NaN

Phasors

- A representation of sinusoidal signals as vectors in the complex plane
 - Simplifies sinusoidal steadystate analysis
- Given
 - $v_1(t) = V_1 \cos(\omega t + \theta_1)$
- The phasor representation is
 - $V_1 = V_1 \angle \theta_1$
- For consistency, use only cosine for the phasor
 - $v_2(t) = V_2 \sin(\omega t + \theta_2) =$ $V_2 \cos(\omega t + \theta_2 - 90^\circ)$
 - $\boldsymbol{V}_2 = \boldsymbol{V}_2 \boldsymbol{\angle} (\boldsymbol{\theta}_2 90^\circ)$

• Phasor diagram

•
$$V_1 = 3 \angle (40^\circ)$$

• $V_2 = 4 \angle (-20^\circ)$

- Phasors rotate counter clockwise
 - V_1 leads V_2 by 60°
 - V_2 lags V_1 by 60°

Complex Impedance

- Impedance is the extension of resistance to AC circuits
 - Extend Ohm's Law to an impedance form for AC signals

• V = ZI

• Inductors oppose a change in current

$$Z_L = \omega L \angle \left(\frac{\pi}{2}\right) = j \omega L$$

- Current lags voltage by 90°
- Capacitors oppose a change in voltage

$$Z_C = \frac{1}{\omega C} \angle \left(-\frac{\pi}{2}\right) = -j\frac{1}{\omega C} = \frac{1}{j\omega C}$$

- Current leads voltage by 90
- Resistor impendence the same as resistance

$$Z_R = R$$

Circuit Analysis with Impedance

- KVL and KCL remain the same
 Use phasor notation to setup equations
- Replace sources by phasor notation
- Replace inductors, capacitors, and resistances by impedance value
 - This value is dependent on the source frequency ω
- Use your favorite circuit analysis techniques to solve for voltage or current
 - Reverse phasor conversion to get sinusoidal signal in time

Current and Voltage

- Current the flow of change
 - $i(t) = \frac{dq(t)}{dt}$
 - Must define a reference direction
 - The direction positive charge flows
- Voltage the potential difference between 2 circuit nodes
 - The polarity defines the reference

Power and Energy

- Power rate of energy transfer
 - P(t) = v(t)i(t)
 - Defined for passive reference configuration
 - Current flows into positive polarity terminal
- Energy amount of power delivered in time interval

•
$$w = \int_{t_1}^{t_2} p(t) dt$$

- $p, w > 0 \rightarrow$ energy absorbed by element
- $p, w < 0 \rightarrow$ energy supplied by element

Ohm's Law and Resistance

- Ohm's Law
 - v = iR
- Resistance
 - $R = \frac{v}{i}$
 - Units of Ohms Ω

$$p = vi \qquad v = iR$$
$$= i^2 R$$
$$= \frac{V^2}{R} = GV^2$$

• Series equivalent

$$R_{\Sigma} = R_{eq} = \sum_{i} R_{i}$$

• Parallel equivalent • $R_{eq} = \frac{1}{\sum_{i} \frac{1}{R_i}}$

Kirchhoff's Laws

- KCL :
 - conservation of charge
 - sum of currents entering node is equal current leaving node
- KVL :
 - conservation of energy
 - Sum of voltages in circuit loop is zero

Voltage-Division Principle

• The fraction of voltage across a given resistance in a series connection is the ratio of the given resistance to the total series resistance

The larger resistor \rightarrow more voltage drop across it

$$v_1 = iR_1 \qquad v_2 = iR_2$$
$$= V_s \left(\frac{R_1}{R_1 + R_2}\right) \qquad = V_s \left(\frac{R_2}{R_1 + R_2}\right)$$

Current-Division Principle

 The fraction of current flowing in a given resistance is the ratio of the other resistance to the sum of the two resistances

Only applies for parallel pairs

Smaller the resistor \rightarrow more current through parallel path

Node-Voltage Analysis

- Voltages at nodes are unknown
- Use KCL equations at nodes
- Steps:
- 1. Select a reference node
- 2. Label each additional by a node voltage
- 3. Write network equations
 - Use KCL at nodes/supernodes, KVL for any additional equations
 - A supernode is required when a voltage source is not grounded
 - Dependent source equations should be re-written in terms of node voltages
- 4. Put the equations into standard form and solve for the node voltages

Mesh-Current Analysis

- Currents around a "mesh" are unknown
 - Requires planar (non-overlapping) circuits
- Use KVL equations around a mesh
- Steps:
- 1. Define mesh currents clockwise around "minimum" loops
- 2. Write network KVL equations for each mesh current
 - Define current sources in terms of mesh currents
 - Shared current sources require a supermesh
 - Dependent source equations should be re-written in terms of mesh currents
- 3. Put the equations into standard form and solve for the node voltages

Superposition Principle

- Given a circuit with multiple independent sources, the total response is the sum of the responses to each individual source
 - Requires linear dependent sources
- Analyze each independent source individually
 - Must zero out independent sources, but keep dependent sources
 - A voltage source becomes a short circuit
 - A current source becomes an open circuit

Thevenin/Norton Equivalent Circuit

Thévenin equivalent circuit

Norton equivalent circuit

- View circuit from two terminals
 - Thevenin qquivalent circuit consists of a voltage source in series with a resistance
 - Norton equivalent circuit consists of a current source in parallel with a resistance
- We care about three things
 - Open circuit voltage
 - Short circuit current
 - Equivalent resistance (same value for both)
- It is possible to switch between Thevenin and Norton easily

Capacitance

- Circuit property to deal with energy in electric fields
- Capacitor stores charge and creates an electric field

•
$$q = Cv$$

• $i = C \frac{dv}{dt}$
• $v = \frac{1}{C} \int_{t_0}^{t} i(t) dt + v(t_0)$

• Power

$$p(t) = v(t) i(t)$$
$$= v(t) C \frac{dv}{dt}$$

• Energy

•
$$w(t) = \frac{1}{2} C v^2(t)$$

- Capacitances in parallel
 - Add like resistors in series
- Capacitances in series
 - Behave like resistors in parallel

• Be sure to remember passive reference configuration

Inductance

- Circuit property to deal with energy in magnetic fields
- Inductors store energy in a magnetic field

•
$$v(t) = L \frac{di}{dt}$$

• $i(t) = \frac{1}{L} \int_{t_0}^t v(t) dt + i(t_0)$

• Power

$$p(t) = v(t) i(t)$$
$$= L \frac{di}{dt} i(t)$$

• Energy

•
$$w(t) = \frac{1}{2} Li^2(t)$$

- Inductances in series
 - Add like resistors in series
- Inductances in parallel
 - Behave like resistors in parallel

• Be sure to remember passive reference configuration

