- 10.21. The pole-zero plots are all shown in Figure S10.21.
(a) For z[n] = §[n + 5),
: X(z)=2% Al

The Fourier transform exists because the ROC includes the unit circle.
(b) For z[n] = é[n — 5],

X(2) = 275, All z except 0.

The Fourier transform exists because the ROC includes the unit circle.

(c) For z[n] = (-1)"u[n],

o0

X(z) = Zz[n]z_"

n=-—00
(o]

— Z(_l)nz—n

n=0

= 1/(1+z71), |2>1

The Fourier transform does not exist because the ROC does not include the unit circle.
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(d) For z[n] = (1/2)"* u[n + 3],

X(2)

]

Z z[n]z™"
S /s

n=-3

i(1/2)n—2z—n+3
n=0

423/(1 - (1/2)z7Y),  |2] > 1/2

The Fourier transform exists because the ROC includes the unit circle.
(e) For z[n] = (—1/3)"u[—n — 2],

X(z)

[o o]

Z z[n]z™"

n=-00
-2

> (=173

n=—oo

> (-1/3)7"2"

n=2

S (-1/3) Rt
n=0

|2| < 1/3
l2] <1/3

922/(1 + 32),
3z/(1 + (1/3)z71),

The Fourier transform does not exist because the ROC does not include the unit circle.

(f) For z[n] = (1/4)*u[—n + 3],

X(z) =

[e <]

Z z[n]z™"

n=—oo

3
> /e

> (/4
n=-3

i(l/‘l) ~n+3 zn—3
n=0

(1/64)273/(1 — 4z),
(1/16)z7%/(1 - (1/4)z71),

lz] < 1/4
|2| < 1/4

376




The Fourier transform does not exist because the ROC does not include the unit circle.
(g) Consider z;[n] = 2"u[—n)].

o0

Xi(z) = ) mfn)e

n=-00
(1]

- o

n=-o00

= Yo"

n=0
= 1/(1-(1/2)2), o <2
= =2271/(1-2:71), |zl <2

Consider z2[n] = (1/4)"u[n — 1].

Xo(z) = Z z2[n])z ™"
= > (/49"
n=1
- i(1/4)n+lz—n-1
n=0

= (/YA -1/, |2l >1/4
The z-transform of the overall sequence z[n] = z1[n] + z3[n] is

271 z71/4

(1-2z71) ti= 1/4)—1’ (1/4) < |z| < 2.

X(z)=-

The Fourier transform exists because the ROC includes the unit circle.
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10.25. (a) The partial fraction expansion of X (2) is
1 2
T1- %z‘l * 1—2-1

X(z) =
Since z[n] is right-sided, the ROC has to be |z] > 1. Therefore, it follows that

o] = - (%)214[711 + 2ufn].

(b) X(z) may be rewritten as

22
X =he—n

Using partial fraction expansion, we may rewrite this as

1 1
= [_z—l-’-z—lJ
2

z z
= 22 |— —
z[ z—l+z—1J

X(2)

2

If z[n] is right-sided, then the ROC for this signal is |2| > 1. Using this fact, we may
find the inverse z-transform of the term within square brackets above to be y[n] =

—(1/2)"u[n] + u[n]. Note that X (z) = 22X (z). Therefore, z[n] = 2y[n + 1]. This gives
n+l
z[n] = -2 (-;-) ' u[n + 1] + 2ufn + 1).

Noting that z[—1] = 0, we may rewrite this as

oln] = — (%)nu[n] + 2ufn].

This is the answer that we obtained in part (a).




10.28. (a) Using eq. (10.3), we get

il ¢
| _ e 25—095
X(z2)=1-095""= —%

r (b) Therefore, X (z) has six zeros lying on a circle of radius 0.95 (as shown in Figure 510.28)
and 6 poles at z = 0.

‘: Im T3le?

=2hy ‘Tl'/’ fV; iﬂ@ "T_r

i
| Figure S10.28
|

(¢) The magnitude of the Fourier transform is as shown in Figure 510.28.
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i
i
[
1 10.30. From the given information, we have
3t 11 . 1 1
z1[n] = X1(z) = i 2] > 3
2
I I and 1 1
! : F1
i :r,g[n.] — Xz(z) = @, |z| > §
Using the time shifting property, we get
1l z 1
H ! zy[n+ 3] +— z:’Xl(z). lz| > 3
' Using the time reversal and shift properties, we get
| aa[—n + 1] =y 2 1X(z7Y), 2] <3
Now, using the convolution property, we get
1
yln] = z1[n + 3] * z3[—n + 1] L Y(z) = 22X1(2) X2(z71), 5 < iz| < 3.
Therefore,
22
b ¢ = .
) (1-3z"1)(1- 32)
H |
il
l il
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10.32. (a) We are given that h[n] = a™u[n] and z[n] = u[n] — u[n — N]. Therefore,

sl = oln] b
= Z hln — k]z[k]

k=—00
N

-1
> a"Fuln — ]
=0

k




Now, y[n] may be evaluated to be

0, n<0
n
Za"a"‘, 0<n<N-1
y[n] = k=0 .
N-1
Za"a"k, n>N-1
k=0
Simplifying,
0, n<0
y[n]={ (@ —aV)/(1-a), 0<n<N-1.
a"(l—a‘N)/(l—a"l), n>N-1

(b) Using Table 10.2, we get
H(z) = 7——1 2| > |al

and
1-27V

X(Z) = T__—é—"T, Allz.

Therefore,

1 z=N
Y(z) = X(2)H(z) = (1—z"1)(1—az?) T -z H(1-aezl)

The ROC is |z| > |a|. Consider

_ 1
T (1-z)(1—-az?)

P(z)

with ROC |z| > |a|. The partial fraction expansion of P(z) is

_yQ —a) + 1/(1 - a™ 1)

(2) = 1—2z1 1—-az"!

Therefore,

pln) = —l—u[n] + a"uln).

1—-a 1—at!

Now, note that
Y(z) = P(2)[1 - z~M.

Therefore,

y[n] = pln} — pln - N = 1 }_ a.{u[n] —ufn— N} + T—:%_—l-{a"u[n] — " Nu[n — N]}-

386




This may be written as

0, n<0
y[n]:{ (a® —a~1)/(1 —a™1), 0<n<N-1.
a"(1 -a~M)/(1 - a1, n>N-1

This is the same as the result of part (a).
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10.34. (a) Taking the z-transform of both sides of the given difference equation and simplifying,
we get

X(z) 1—z"1—2z-2"

The poles of H(z) are at z = (1/2) £ (v/5/2). H(z) has a zero at z = 0. The pole-zero
plot for H(z) is as shown in Figure S10.34. Since h[n] is causal, the ROC for H(z) has
to be |z] > (1/2) + (V5/2).

(b) The partial fraction expansion of H(z) is

1/V5 5 1/V5
- (48 1-(3%

8] = _% (1—?@) ufn] + % (1—32ﬁ> ufn].

H(z) = Y(z) gl

H(z)=-

Therefore,

Figure $10.34

(c) Now assuming that the ROC is (v5/2) — (1/2) < |z| < (1/2) + (v/5/2), we get

n _\/— n
h[n]=%(_1_+2_\/g.) u[—n—l]+%(1 - 5> uln].
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10.37. (a) The block-diagram may be redrawn as shown in part (a) of the figure below. This may
be treated as a cascade of the two systems shown within the dotted lines in Figure
S510.37. These two systems may be interchanged as shown in part (b) of the figure
Figure 510.37 without changing the system function of the overall system. From the
figure below, it is clear that

y[n] = z[n] + ga:[n -1]- %y[n 1]+ gy[n ~2].

L..._-____-—-

.Qn.ﬁ-cm I ijlww 0

Figure S10.37
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(b) Taking the z-transform of the above difference equation and simplifying, we get

H(z)= Y(z) _ Ltge” 1+g2 .
X 1+je -5 @+ Eh0-5)

H(z) has poles at z = 1/3 and z = —2/3. Since the system is causal, the ROC has to
be |z| > 2/3. The ROC includes the unit circle and hence the system is stable.
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10.42. (a) Taking the unilateral s-transform of both sides of the given difference equation, we get
V(z) + 327 1Y(z) + 3y[-1] = X(2).

Setting X (z) = 0, we get
-3
V) =TT
The inverse unilateral z-transform gives the zero-input response
ysiln) = —3(=3)"uln] = (=3)** uln].

Now, since it is given that z[n] = (1/2)"u[n], we have

X(z):—————l_%z_l, |z] > 1/2.
Setting y[—1] to be zero, we get
1
327! = —
V@) +37Ve) = T
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Therefore,
1
V) = (1= 3271)(1 4 32-1)
The partial fraction expansion of V(z) is

Y 6/7
Ie) = 1-1z1 *1 +32-1°

The inverse unilateral z-transform gives the zero-state response

yasln) = 2 (1) ufm + 8 (=3)mufm).
7\2 7

(b) Taking the unilateral z-transform of both sides of the given difference equation,

we get
| 1 |
() = 327V(E) ~ gul-1] = X() - L2 x(a),
Setting X(z) = 0, we get
Y(z) =0.

The inverse unilateral z-transform gives the zero-input response
Yzi[n] = 0.
Now, since it is given that z[n] = u[n], we have

1
X(Z) = I—:F, IZI > 1.

ret

2

Setting y[—1] to be zero, we get

1 _ 1 (1/2)z!
V) = 527 W0e) =t - 1—z1°
Therefore, .
Y(z) = 1-271

The inverse unilateral z-transform gives the zero-state response

Yzs[n] = un].

(c) Taking the unilateral z-transform of both sides of the given difference equation, we get

1 1 1
V(z) - 52_13’(2) —5yl-1 = X(2) - EZ—IX(Z)-
Setting X(z) = 0, we get

V() = 2

— 11
32
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} . The inverse unilateral z-transform gives the zero-input response
A ] 1 n+1
i walnl = (3) i)

Since the input z[n] is the same as the one used in the part (b), the zero-state

response is still
Yas[n] = u[n].
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