
Signals and Systems I EE360: Spring 19

Homework #9
Due We. 5/08

A number of these homework problems require you first go through the “Solved Problems” since
the description/definition is not in the chapter material.

You are allowed to use Matlab (or similar) to help solve these problems but will be required to
know how to do them by hand for the Final Exam. As an example, you may want to find the
inverse using the Symbolic Toolbox:

syms z; % create symbolic variable z

A = eye(3); % create simple system matrix

G = (z*eye(3) -A)^-1 % find inverse

Other Matlab functions that may be helpful include inv.m, rank.m, eig.m.

1. (Schaum 7.6) [half points]

Solution

See book solutions.

2. (Schaum 7.16 - 7.17)

Note this problem is solved in the book already but highlights the difference between canonical
forms.

Solution

See book solutions.

3. (Schaum 7.65)

Solution

Notice this is a multi-output problem.

The outputs can be found by inspection as:

y1(t) = − 1

R1
q2(t) +

1

R1
x(t) = q2(t) + x(t)

y2(t) = q2(t)

The state equations require more effort. First, do KVL on the right loop:

q1(t) = iL(t)

⇒ L
diL(t)

dt
+ iL(t)R = q2(t)

q1(t)

dt
= −R

L
q1(t) + q2(t)

Next, KCL @ the node above the inductor:

q2(t) = vc(t)

⇒ ic(t) + iL(t) =
x(t)− vc(t)

R
dvc(t)

dt
+ q1(t) =

x(t)− q2(t)
R

dq2(t)

dt
= −q1(t)−

1

R
q2(t) + x(t)
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This results in the state space equations

q̇(t) =

[
q̇1(t)
q̇2(t)

]
=

[
−1 1
−1 −1

]
q(t) +

[
0
1

]
x(t)

y(t) =

[
y1(t)
y2(t)

]
=

[
0 −1
0 1

]
q(t) +

[
1
0

]
x(t)

4. (Schaum 7.68)

Solution

(a) Using the states as labeled,

q̇1(t) = −2q1(t)− 3q2(t)

q̇2(t) = q2(t) + x(t)

y(t) = q1(t) + q2(t)

These relationships result in state-space representation,

q̇(t) =

[
−2 −3

0 1

]
q(t) +

[
0
1

]
x(t)

y(t) =
[
1 1

]
q(t) + 0x(t)

(b) The eigenvalues of matrix A can be found using Matlab’s eig.m function. The eigenval-

ues are λ =
[
−2 1

]T
. Since the real part of Re{λ2} > 0, this is not an asymptotically

stable system.

(c)

H(s) = c(sI −A)−1b

Define G = (sI −A)−1

G =

[
s+ 2 3

0 s− 1

]−1
=

1

(s+ 2)(s− 1)

[
s− 1 −3

0 s+ 2

]
=

[
a b
c d

]
H(s) =

[
1 1

] [a b
c d

] [
0
1

]
=
[
1 1

] [b
d

]
= b+ d

=
−3 + s+ 2

(s+ 2)(s− 1)
=

s− 1

(s+ 2)(s− 1)

=
1

s+ 2

(d) Since the system only has a pole @ s = −2 and is causal, this implies the system is
BIBO stable. Notice, that even though part (b) was unstable, because of pole/zero
cancellation, this turns out to be a BIBO stable system. Therefore it is important to
check the system function to determine stability.
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5. (Schaum 7.71(b))

Solution

eAt = L−1u
{

(sI −A)−1
}

= L−1u
{[
s −1
2 s+ 3

]}
= L−1u

{
1

s(s+ 3) + 2

[
s+ 3 1
−2 s

]}
= L−1u

{
1

(s+ 2)(s+ 1)

[
s+ 3 1
−2 s

]}
= L−1u

{[ A
s+2 + B

s+1
C
s+2 + D

s+1
E
s+2 + F

s+1
G
s+2 + H

s+1

]}
Doing PFE on each element of the 2× 2 matrix

A =
s+ 3

s+ 1

∣∣∣∣
s=−2

=
1

−1
= −1 B =

s+ 3

s+ 2

∣∣∣∣
s=−1

= 2

C =
1

s+ 1

∣∣∣∣
s=−2

= −1 D =
1

s+ 2

∣∣∣∣
s=−1

= 1

E =
−2

s+ 1

∣∣∣∣
s=−2

= 2 F =
−2

s+ 2

∣∣∣∣
s=−1

= −2

G =
s

s+ 1

∣∣∣∣
s=−2

= 2 H =
s

s+ 2

∣∣∣∣
s=−1

= −1

Resulting in matrix elements that have the inverse Laplace transform taken by inspection

eAt = L−1u
{[ −1

s+2 + 2
s+1

−1
s+2 + 1

s+1
2
s+2 + −2

s+1
2
s+2 + −1

s+1

]}
=

[
−e−2t + 2e−t −e−2t + e−t

2e−2t − 2e−t 2e−2t − e−t
]
u(t)

6. (Schaum 7.72)

Please solve it without trying to use the
[
e−t cos t

]
u(t) types of terms but instead just using

normal PFE. Note this means you will have complex α in the e−αtu(t) terms.

Solution

Notice that you will be using the system from 7.65 to find the output with the equation

Y (s) = C(sI −A)−1q[0] + [C(sI −A)−1b+ d]X(s).

Since we are told to solve this under initially relaxed conditions, the output only depends on
the input x(t) = u(t)↔ X(s) = 1

s

Y (s) = [C(sI −A)−1b+ d]X(s).

To solve this, define

G = (sI −A)−1 =

[
a b
c d

]
,
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and note that since we only need to find vc(t) = y2(t) only the bottom row of the output
equations (state space matrices C and d) is required.

Y (s) = [c(sI −A)−1b+ d]X(s)

=

[[
0 1

]
G

[
0
1

]
+ 0

]
1

s

=

[[
0 1

] [a b
c d

] [
0
1

]]
1

s

=

[[
c d

] [0
1

]]
1

s

= d
1

s

The d entry of G can be found by taking the inverse

G = (sI −A)−1 =

[
s+ 1 −1

1 s+ 1

]−1
=

1

(s+ 1)2 + 1

[
s+ 1 1
−1 s+ 1

]
⇒ d =

s+ 1

s2 + 2s+ 2
.

Finally, the output can be found by PFE and inverse LT,

Y (s) = d
1

s

=
s+ 1

s(s2 + 2s+ 2)
=
A

s
+

B

s+ (1− j)
+

C

s+ (1 + j)

=
1/2

s
+

1/(2(j − 1))

s+ (1− j)
+
−1/(2(j + 1))

s+ (1 + j)

The output can be found using a Laplace Transform table as

y(t) =
1

2
u(t) +

1

2(j − 1)
e−(1−j)tu(t)− 1

2(j + 1)
e−(1+j)tu(t).

7. (Schaum 7.73)

Solution

See problem 7.48 for a similar problem.

Since, there are no differentials on x(t), let the state variables be directly related to the output

q1(t) = y(t) q2(t) = y′(t)

This results in the following relationships

q̇1(t) = q2(t)

q̇2(t) = −3q2(t)− 2q1(t)

y(t) = q1(t)
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Arranging into matrix form the state equations are

q̇(t) =

[
0 1
−2 −3

]
q(t)

y(t) =
[
1 0

]
q(t)

The output with the given initial conditions can be found as

y(t) = ceAtq(0) +

∫ t

0
ceA(t−τ)bx(τ)dτ

Using the result from (7.71) for eAt,

eAt =

[
a b
c d

]
ceAtq(0) =

[
1 0

] [a b
c d

] [
0
1

]
= b

= (e−t − e−2t)u(t)

ceA(t−τ)b =
[
1 0

] [a b
c d

] [
0
0

]
= 0

The final result is just from the initial conditions (since there is no input x(t))

y(t) = (e−t − e−2t)u(t)
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