Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu

EE360: Signals and System I

Chapter 9 Laplace Transform

http://www.ee.unlv.edu/~b1morris/ee360/

LTI Eigensignals

- Recall:
- $x(t) = e^{st} \rightarrow y(t) = H(s)e^{st}$
- Transfer function: $H(s) = \int_{-\infty}^{\infty} h(t)e^{-st}dt$
- Let $s = j\omega$ for Fourier Transform
- $H(s)|_{s=j\omega} = H(j\omega) = \int_{-\infty}^{\infty} h(t)e^{-j\omega t}dt$

Laplace Transform

- Define LP for $s = \sigma + j\omega \in \mathbb{C}$
- $X(s) \triangleq \int_{-\infty}^{\infty} x(t) e^{-st} dt$
- Notation:
- $X(s) = \mathcal{L}\{x(t)\}$
- $x(t) \leftrightarrow X(s)$

Laplace Transform Tables

- Last time, we computed the LT directly from the integral definition
 - Learned that there is an algebraic form for LT as well as the region of convergence (ROC)
 - Both are needed to uniquely identify the LT
- More often, we will use tables of known transform pairs (Table 9.2) and transform properties (Table 9.1).

ROC for Laplace Transform

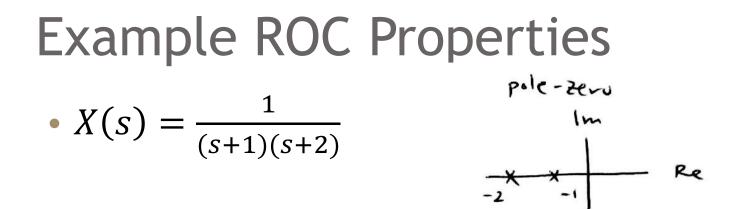
- Algebraic expressions of LT are not sufficient for distinguishing LT, must also include ROC
- 8 properties of ROC
- 1: ROC consists of strips parallel to *jω*-axis (right-half plane, left-half plane, strip)
 ROC only depends on *Re*{*s*} = σ ⇒ vertical lines
- 2: Rational X(s) does not contain any poles
 X(s) is infinite at pole ⇒ not stable

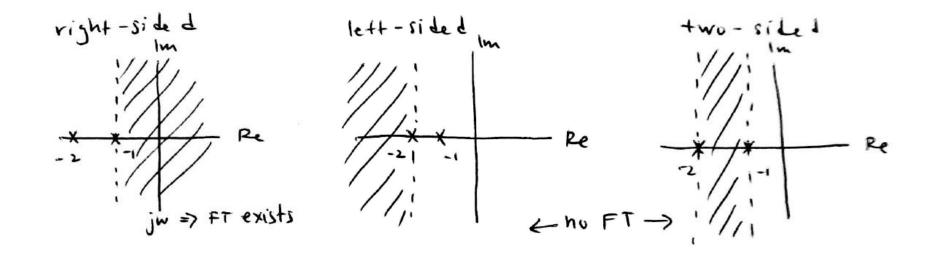
ROC for Laplace Transform II

- 3: If *x*(*t*) is finite duration and absolutely integrable, then ROC is the entire s-place
- 4: If x(t) is right-sided and {s|Re{s} = σ₀} ⊆ ROC, then {s|Re{s} > σ₀} ⊆ ROC
 Right-sided ROC
- 5: If *x*(*t*) is left-sided and {*s*|*Re*{*s*} = σ₀} ⊆ ROC, then {*s*|*Re*{*s*} < σ₀} ⊆ ROC
 Left-sided ROC

ROC for Laplace Transform III

- 6: If x(t) is two-sided (not-bounded) and $\{s|Re\{s\} = \sigma_0\} \subseteq \text{ROC}$, then the ROC is a vertical strip containing the line $Re\{s\} = \sigma_0$
- 7: If the LT X(s) is rational, the ROC is bounded by poles or extends to infinity (pole @ ∞)
- 8: If *X*(*s*) is rational, then
 - x(t) right-sided, ROC is the right-half plane to the right of the right-most pole
 - x(t) left-sided, ROC is the left-half plane to the left of the left-most pole





Inverse LT

• By using inverse FT we can find the definition of the inverse LT

$$x(t) = \frac{1}{2\pi} \int_{\sigma-j\omega}^{\sigma+j\omega} X(s)e^{st}ds$$

- The synthesis equation is a weighted sum of complex exponentials
- Note: this is a contour integral along any vertical line in the ROC of s-plane!
 - We won't do it this way, instead will rely on PFE techniques in lookup tables

Example Inverse LT

$$X(s) = \frac{s}{s^2 + 5s + 6} = \frac{A}{(s+2)(s+3)} = \frac{A}{s+2} + \frac{B}{s+3}$$

Solve for partial terms

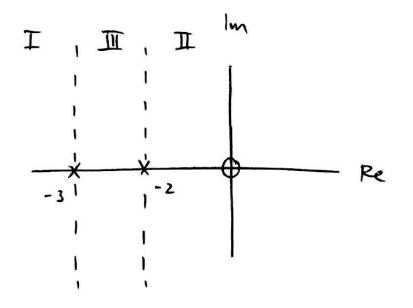
•
$$A = \frac{s}{s+3}\Big|_{s=-2} = -2$$

•
$$B = \frac{s}{s+2}\Big|_{s=-3} = 3$$

Combine for final answer

$$X(s) = -\frac{2}{s+2} + \frac{3}{s+3}$$

• What are the possible ROC's?



Example Inverse LT II

- ROC I
 - *Re*{*s*} < −3 ⇒ left-sided signal *X*(*s*) = −²/_{*s*+2} + ³/_{*s*+3} ↔ *x*(*t*) = −2[−*e*^{-2*t*}*u*(−*t*)] + 3[−*e*^{-3*t*}*u*(−*t*)]
 - Notice: the use of left-sided transform pair
- ROC II
 - $Re\{s\} > -2 \implies$ right-sided signal
 - $X(s) \leftrightarrow x(t) = -2[e^{-2t}u(t)] + 3[e^{-3t}u(t)]$

11

Example Inverse LT III

- ROC III
 - $-3 < Re\{s\} < -2 \implies$ two-sided signal
 - Want intersection of
 - Left-sided $\frac{1}{s+2}$ term ($Re\{s\} < -2$)
 - Right-sided $\frac{1}{s+3}$ term ($Re\{s\} > -3$)

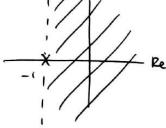
Properties of LT (Table 9.1)

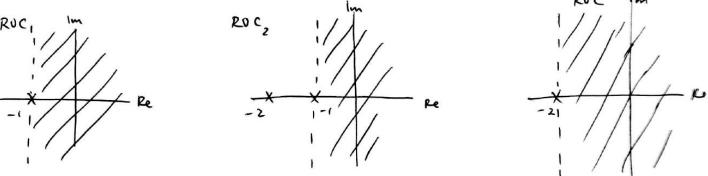
Linearity

- $x_1(t) \leftrightarrow X_1(s)$, ROC = R_1
- $x_2(t) \leftrightarrow X_2(s)$, ROC = R_2
- $ax_1(t) + bx_2(t) \leftrightarrow aX_1(s) + bX_2(s)$
 - ROC $\supset R_1 \cap R_2$
 - Contains at the very least intersection but could be more

13

Linearity Example





Note: RUC larger than RUC, ARUCZ because zero and pole cancel @ s= -1

Properties of LT II

- Time-shift
 - $x(t) \leftrightarrow X(s), \operatorname{ROC} = R$
 - $x(t t_0) \leftrightarrow e^{-st_0}X(s)$, ROC = R
- S-domain shift
 - $e^{s_0 t} x(t) \leftrightarrow X(s s_0), \operatorname{ROC} = R + Re\{s_0\}$
- Convolution property
 - $x_1(t) * x_2(t) \leftrightarrow X_1(s)X_2(s), \text{ROC} \supset \mathbb{R}_1 \cap \mathbb{R}_2$
 - Key for LTI systems described by differential equations

15

Properties of LT III

- Differentiation in time
 - $\stackrel{\bullet}{\to} \frac{dx(t)}{dt} \longleftrightarrow sX(s), \operatorname{ROC} \supset R$
 - More generally,

$$\stackrel{d^k}{=} \frac{d^k}{dt^k} x(t) \leftrightarrow s^k X(s), \operatorname{ROC} \supset R$$

- Integration in time
 - ∫^t_{-∞} x(τ)dτ ↔ ¹/_sX(s), ROC ⊃ R ∩ {s|Re{s} > 0}
 With x(t) = δ(t),

•
$$u(t) = \int_{-\infty}^{t} \delta(\tau) d\tau \leftrightarrow \frac{1}{s}, \text{ROC} = \{s | Re\{s\} > 0\}$$

Integration is useful for block diagram representations

LTI Systems and LT

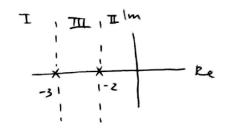
- Reminder,
- Convolution
- $y(t) = x(t) * h(t) \leftrightarrow Y(s) = X(s)H(s)$
 - H(s) is the system function or transfer function
- Eigensignal
- $x(t) = e^{st} \leftrightarrow y(t) = H(s)e^{st}$
 - For *s* in the ROC of H(s)
 - If s = jω is in the ROC, then the FT exists and H(jω) is the frequency response

LTI System Properties from *H*(*s*)

- Many properties of LTI system can be determined directly from system function *H(s)*
 - 1: Causality a causal system has an ROC that is a right half plane
 - 2: Stability a system is stable iff ROC of *H*(*s*) contains the entire *j*ω-axis
- For rational *H*(*s*) [ratio of polynomial functions as in diff eqns], more can be specified
 - 1r: Causality the system is causal iff ROC is the right-half plane to the right of the right-most pole
 - 2r: Stability a causal system is stable iff all poles lie in the half-plane to the left of the *jω*-axis
 - All poles have negative real parts

Example

Example $H(s) = \frac{S}{(s+2)(s+3)} = \frac{-2}{s+2} + \frac{3}{s+3}$ \uparrow rational



RUC I not consal (anti-consal not stable $h_I(t) = 2e^{-2t}u(-t) - 3e^{-3t}u(-t)$ not right-half plane) no jou-axis

RUC II causal stable $h_{II}(t) = -2e u(t) + 3e u(t)$ right-half plane, contains jw-axis, $h_{II}(t) = -2e u(t) + 3e u(t)$

not causal, not stable, $h_{III}(t) = 2e^{-2t}u(t) + 3e^{-3t}u(t)$

Differential Equation LTI Systems

$$\sum_{k=0}^{N} a_k \frac{d^k y(t)}{dt^k} = \sum_{k=0}^{M} b_k \frac{d^k x(t)}{dt^k}$$

• Use differentiation in time-domain property

$$\left[\sum_{K=0}^{N} a_k s^k\right] Y(s) = \left[\sum_{K=0}^{M} b_k s^k\right] X(s)$$

$$H(s) = \frac{Y(s)}{X(s)} = \frac{\sum_{k=0}^{M} b_k s^k}{\sum_{k=0}^{N} a_k s^k} \quad \longleftarrow \quad \text{Zeros}$$

Example

given causal LTI system described by

$$\frac{J^{2}\gamma(t)}{Jt^{2}} + 3 \frac{d\gamma(t)}{Jt} + 2\gamma(t) = \frac{J\gamma(t)}{dt} + 3\chi(t)$$

Find h(t)

$$Y(s) \left[s^{2} + 3s + 2\right] = \chi(s) \left[s + 3\right]$$

$$H(s) = \frac{\gamma(s)}{\chi(s)} = \frac{s+3}{s^{2}+3s+2} = \frac{s+3}{(s+2)(s+1)} \Rightarrow \frac{3\gamma(t)}{3\gamma(t)} + \frac{1}{2}$$

$$= \frac{A}{St_{2}} + \frac{B}{St_{1}} = \frac{-1}{s+2} + \frac{2}{s+1}$$

$$F(s) = \frac{St_{3}}{s+1} \left|_{s=-2} = \frac{-1}{-1} = -1$$

$$F(s) = -\frac{2}{s} \left|_{s=-2} = \frac{1}{s+2} + \frac{2}{s+1}$$

$$F(s) = -\frac{2}{s} \left|_{s=-2} = \frac{1}{s+2} + \frac{2}{s+1} + \frac{2}{s+1}$$

$$F(s) = -\frac{2}{s} \left|_{s=-2} = \frac{1}{s+2} + \frac{2}{s+1} + \frac{2}{s+$$