1. (SPR 4.87)
Let $Y = 2X + 3$. Find the pdf of Y if X is a uniform r.v. over $(-1, 2)$.

Solution

The solution can be found with the equation

$$f_Y(y) = f_X(x) \left| \frac{dx}{dy} \right| = f_X[h(y)] \left| \frac{dh(y)}{dy} \right| .$$

Since $h(y) = 0.5(y - 3)$, the solution is

$$f_Y(y) = f_X[h(y)] \left| \frac{dh(y)}{dy} \right|$$

$$= f_X(0.5(y - 3)) \frac{1}{2}$$

Remember that since $X \sim U[-1, 2]$, $f_X(x) = \frac{1}{3}$ is a constant value over the interval.

$$= \frac{1}{3} \cdot \frac{1}{2} = \frac{1}{6}$$

Notice this is defined over the interval $x = [-1, 3]$. When the limits are plugged into $h(y)$ this results in $y = [1, 7]$, meaning Y is a uniform random variable $Y \sim U[1, 7]$. See problem 4.2, 4.3, and 4.4 for more examples.

2. (SPR 4.92)
Let X denote the number of heads obtained when three independent tossings of a fair coin are made. Let $Y = X^2$. Find $E[Y]$ and $Var(Y)$.

Solution

Note that since this is a Binomial RV with distribution $X \sim B(3, 0.5)$, the probability can be found from $p_X(k) = \binom{3}{k} 0.5^k (1 - 0.5)^{3-k}$. This results in pmf

$$p_X(0) = \frac{1}{8}$$
$$p_X(1) = \frac{3}{8}$$
$$p_X(2) = \frac{3}{8}$$
$$p_X(3) = \frac{1}{8}.$$

Notice this is defined over the interval $x = [0, 3]$. When the limits are plugged into $h(y)$ this results in $y = [0, 9]$, meaning Y is a uniform random variable $Y \sim U[0, 9]$. See problem 4.2, 4.3, and 4.4 for more examples.
The expected value can then be computed by definition

\[E[Y] = E_X[X^2] = \sum x_i^2 p_X(x_i) \]

\[= \sum_{k=0}^{3} k^2 p_X(k) \]

\[= 0^2 p_X(0) + 1^2 p_X(1) + 2^2 p_X(2) + 3^2 p_X(3) \]

\[= 1(\frac{3}{8}) + 4(\frac{3}{8}) + 9(\frac{1}{8}) \]

\[= \frac{3}{8} + \frac{12}{8} + \frac{9}{8} = 3 \]

Again, use definition for variance \(Var(Y) = E[Y^2] - E^2[Y] \). First compute second moment

\[E[Y^2] = E[X^4] = \sum x_i^4 p_X(x_i) \]

\[= \sum_{k=0}^{3} k^4 p_X(k) \]

\[= 0^4 p_X(0) + 1^4 p_X(1) + 2^4 p_X(2) + 3^4 p_X(3) \]

\[= 1(\frac{3}{8}) + 16(\frac{3}{8}) + 81(\frac{1}{8}) \]

\[= \frac{3}{8} + \frac{48}{8} + \frac{81}{8} = 16.5 \]

Use second moment to compute variance.

\[Var(Y) = E[Y^2] - E^2[Y] \]

\[= 16.5 - 3^2 = 7.5 \]

3. (SPR 5.84)

Consider a random process \(X(t) \) defined by

\[X(t) = Y \cos(\omega t + \Theta) \]

where \(Y \) and \(\Theta \) are independent r.v.’s and are uniformly distributed over \((-A, A)\) and \((-\pi, \pi)\) respectively.

(a) Find the mean of \(X(t) \).
(b) Find the autocorrelation function \(R_X(t, s) \) of \(X(t) \).

Hint: Be sure to look at Problem 5.20 to help on these problems.

Solution

(a) Note: this problem is very similar to the example problem from lecture.

\[E[X(t)] = E[Y \cos(\omega t + \Theta)] \]

\[= E_Y[Y] E_{\Theta}[\cos(\omega t + \Theta)] \]

by independence

\[= 0 \]
(b) Make use of lecture example and that \(Y \) is a zero-mean RV.

\[
R_x(t, s) = E[X(t)X(s)] = E[Y \cos(\omega t + \Theta)Y \cos(\omega s + \Theta)]
\]
\[
= E[Y^2 \cos(\omega t + \Theta) \cos(\omega s + \Theta)]
\]
\[
= E_Y[Y^2]E_\Theta[\cos(\omega t + \Theta) \cos(\omega s + \Theta)]
\]
\[
= Var(Y) \left(\frac{1}{2} \cos \omega \tau \right) \quad \text{independence, zero-mean, lecture}
\]
\[
= 4A^2 \frac{1}{12} \cos \omega (s - t)
\]
\[
= 4A^2 \frac{6}{2} \cos \omega (s - t)
\]

4. (SPR 5.85)

Suppose that a random process \(X(t) \) is wide-sense stationary with autocorrelation

\[
R_X(t, t + \tau) = e^{-|\tau|/2}.
\]

(a) Find the second moment of the r.v. \(X(5) \).

(b) Find the second moment of the r.v. \(X(5) - X(3) \).

Solution

(a)

\[
E[X^2(5)] = E[X(5)X(5)] = R_X(5, 5 + 0) = e^{-0/2} = 1
\]

(b)

\[
E[(X(5) - X(3))^2] = E[X^2(5) - 2X(5)X(3) + X^2(3)]
\]
\[
= E[X^2(5)] - 2E[X(5)X(3)] + E[X^2(3)]
\]
\[
= R_X(0) - 2R_X(2) + R_X(0)
\]
\[
= 2(R_X(0) - R_X(2))
\]
\[
= 2(1 - e^{-1})
\]

5. (SPR 5.87)

Consider the random processes

\[
X(t) = A_0 \cos(\omega_0 t + \Theta) \quad Y(t) = A_1 \cos(\omega_1 t + \Phi)
\]

where \(A_0, A_1, \omega_0, \omega_1 \) are constants and r.v.’s \(\Theta \) and \(\Phi \) are independent and uniformly distributed over \((-\pi, \pi) \).

(a) Find the cross-correlation function \(R_{XY}(t, t + \tau) \) of \(X(t) \) and \(Y(t) \).

(b) Repeat (a) if \(\Theta = \Phi \).

Solution
(a)

\[R_{XY}(\tau) = E[X(t)Y(t+\tau)] = E[A_0 \cos(\omega_0 t + \Theta) A_1 \cos(\omega_1 (t + \tau) + \Phi)] \]

\[= A_0 A_1 E[\cos(\omega_0 t + \Theta) \cos(\omega_1 (t + \tau) + \Phi)] \]

Given independence \(f_{\Theta \Phi}(\theta, \phi) = f_{\Theta}(\theta) f_{\Phi}(\phi) = \frac{1}{2\pi} \frac{1}{2\pi} = \frac{1}{4\pi} \)

\[= A_0 A_1 \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \cos(\omega_0 t + \theta) \cos(\omega_1 (t + \tau) + \phi) \frac{1}{4\pi} d\phi d\theta \]

\[= \frac{A_0 A_1}{4\pi} \int_{-\pi}^{\pi} \cos(\omega_0 t + \theta) d\theta \int_{-\pi}^{\pi} \cos(\omega_1 (t + \tau) + \phi) d\phi \]

\[= 0 \]

(b) When \(\Theta = \Phi \) this is a single RV problem (similar to lecture).

\[R_{XY}(\tau) = E[X(t)Y(t+\tau)] = E[A_0 \cos(\omega_0 t + \Theta) A_1 \cos(\omega_1 (t + \tau))] \]

Use trig identity \(\cos u \cos v = \frac{1}{2} [\cos(u - v) + \cos(u + v)] \)

\[= \frac{A_0 A_1}{2} E[\cos(\omega_0 t + \Theta - \omega_1 (t + \tau)) \cos(\omega_0 t + \Theta + \omega_1 (t + \tau))] \]

\[= \frac{A_0 A_1}{2} E[\cos((\omega_0 - \omega_1) t - \omega_1 (\tau)) + \cos((\omega_0 + \omega_1) t + 2\Theta + \omega_1 \tau)] \]

\[= \frac{A_0 A_1}{2} \cos((\omega_0 - \omega_1) t - \omega_1 (\tau)) \]

\[= \frac{A_0 A_1}{2} \cos((\omega_1 - \omega_0) t + \omega_1 (\tau)) \]