CONTINUOUS TIME FOURIER SERIES

CHAPTER 3.3-3.8

CTFS TRANSFORM PAIR

• Suppose x(t) can be expressed as a linear combination of harmonic complex exponentials

16

- $x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}$ synthesis equation
- Then the FS coefficients $\{a_k\}$ can be found as

•
$$a_k = \frac{1}{T} \int_T x(t) e^{-jk\omega_0 t} dt$$
 analysis equation

- $\blacksquare \, \omega_0$ fundamental frequency
- $\blacksquare T = 2\pi/\omega_0$ fundamental period
- $\blacksquare a_k$ known as FS coefficients or spectral coefficients

CTFS PROOF

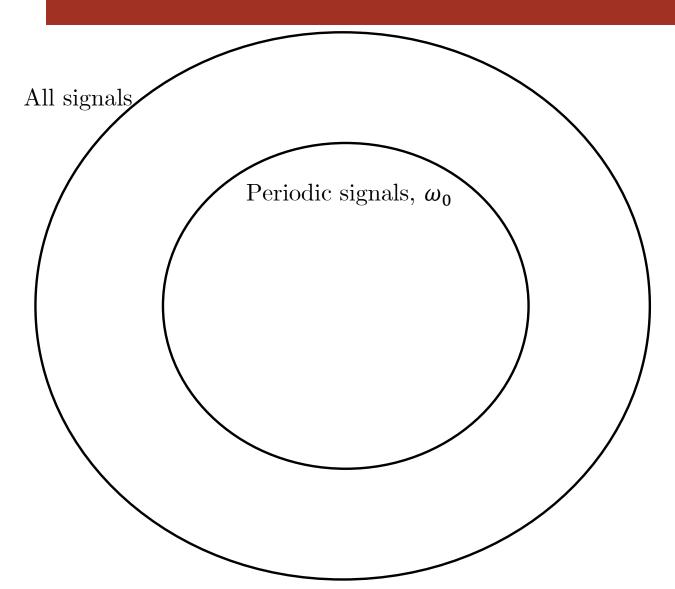
• While we can prove this, it is not well suited for slides.

17

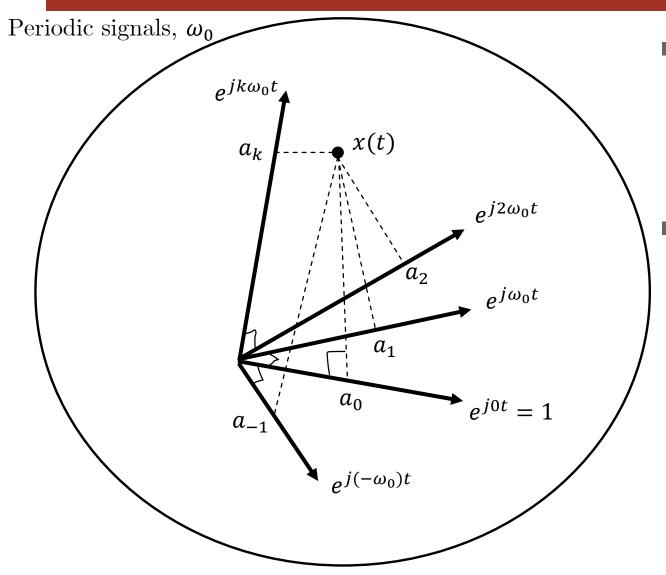
See additional handout for details

 Key observation from proof: Complex exponentials are orthogonal

VECTOR SPACE OF PERIODIC SIGNALS



VECTOR SPACE OF PERIODIC SIGNALS



- Each of the harmonic exponentials are orthogonal to each other and span the space of periodic signals
- The projection of x(t) onto a particular harmonic (a_k) gives the contribution of that complex exponential to building x(t)
 - a_k is how much of each harmonic is required to construct the periodic signal x(t)

HARMONICS

...

■ $k = \pm 1 \Rightarrow$ fundamental component (first harmonic)

20

- Frequency ω_0 , period $T = 2\pi/\omega_0$
- $k = \pm 2 \Rightarrow$ second harmonic
 - \blacksquare Frequency $\omega_2=2\omega_0,$ period $T_2=T/2$ (half period)

•
$$k = \pm N \Rightarrow$$
 Nth harmonic

• Frequency $\omega_N = N\omega_0$, period $T_N = T/N$ (1/N period)

■ $k = 0 \Rightarrow a_0 = \frac{1}{T} \int_T x(t) dt$, DC, constant component, average over a single period

HOW TO FIND FS REPRESENTATION

 Will use important examples to demonstrate common techniques

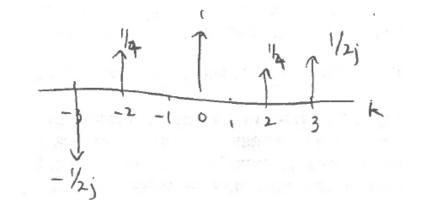
- Sinusoidal signals Euler's relationship
- Direct FS integral evaluation
- FS properties table and transform pairs

SINUSOIDAL SIGNAL

- $x(t) = 1 + \frac{1}{2}\cos 2\pi t + \sin 3\pi t$
- First find the period
 - Constant 1 has arbitrary period
 - $\cos 2\pi t$ has period $T_1 = 1$
 - $\sin 3\pi t$ has period $T_2 = 2/3$
 - $T = 2, \omega_0 = 2\pi/T = \pi$
- Rewrite x(t) using Euler's and read off a_k coefficients by inspection

•
$$x(t) = 1 + \frac{1}{4} \left[e^{j2\omega_0 t} + e^{-j2\omega_0 t} \right] + \frac{1}{2j} \left[e^{j3\omega_0 t} - e^{-j3\omega_0 t} \right]$$

- Read off coeff. directly
 - $a_0 = 1$
 - $a_1 = a_{-1} = 0$
 - $a_2 = a_{-2} = 1/4$
 - $a_3 = 1/2j, a_{-3} = -1/2j$
 - $a_k = 0$, else



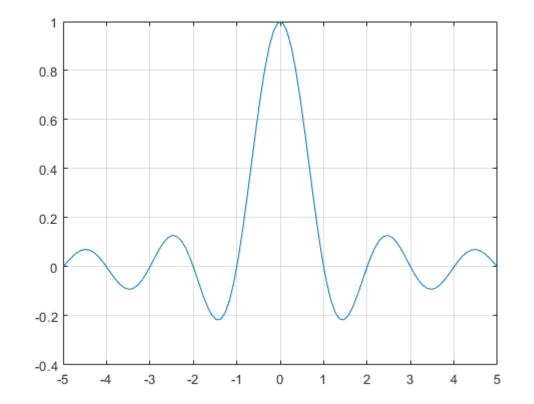
PERIODIC RECTANGLE WAVE

•
$$x(t) = \begin{cases} 1 & |t| < T_1 \\ 0 & T_1 < |t| < \frac{T}{2} \end{cases}$$

$$\begin{aligned} k \neq 0 \qquad & a_{k} = \frac{1}{T} \int_{T} e^{-jk\omega_{0}t} dt \qquad \qquad k = 0 \qquad a_{0} = \frac{1}{T} \int_{T} x(t) dt = \frac{1}{T} \int_{-T_{1}}^{T_{1}} dt = \frac{2T_{1}}{T} \\ & = -\frac{1}{jk\omega_{0}T} \left[e^{-jk\omega_{0}t} \right]_{-T_{1}}^{-T_{1}} = \frac{1}{jk\omega_{0}T} \left[e^{jk\omega_{0}T_{1}} - e^{-jk\omega_{0}T_{1}} \right] \\ & = \frac{2}{k\omega_{0}T} \left[\frac{e^{jk\omega_{0}T_{1}} - e^{-jk\omega_{0}T_{1}}}{2j} \right] = \frac{2\sin(k\omega_{0}T_{1})}{k\omega_{0}T} \\ & = \underbrace{\frac{\sin(k\omega_{0}T)}{k\pi}}_{\text{modulated sin function}} \cdot \\ & x(t) = \begin{cases} 1 & |t| < T_{1} \\ 0 & T_{1} < |t| < T/2 \end{cases} \longleftrightarrow a_{k} = \begin{cases} 2T_{1}/T & k = 0 \\ \frac{\sin(k\omega_{0}T)}{k\pi} & k \neq 0 \end{cases} \end{aligned}$$

SINC FUNCTION

- Important signal/function in DSP and communication
 - $\operatorname{sinc}(x) = \frac{\sin \pi x}{\pi x}$ normalized
 - $\operatorname{sinc}(x) = \frac{\sin x}{x}$ unnormalized
- Modulated sine function
 - Amplitude follows 1/x
 - Must use L'Hopital's rule to get x=0 time



RECTANGLE WAVE COEFFICIENTS

- Consider different "duty cycle" for the rectangle wave
 - $T = 4T_1 50\%$ (square wave)
 - $T = 8T_1 \ 25\%$
 - $T = 16T_1 \ 12.5\%$
- Note all plots are still a sinc shape
 - Difference is how the sync is sampled
 - Longer in time (larger T) smaller spacing in frequency → more samples between zero crossings

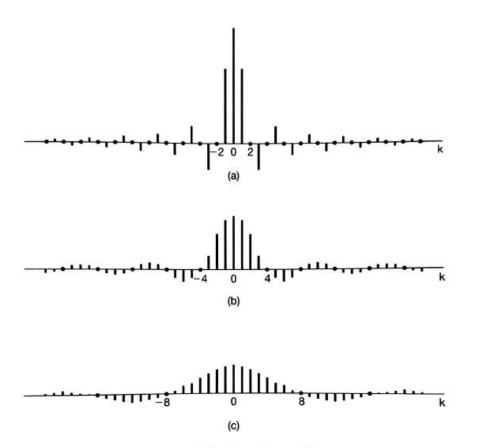


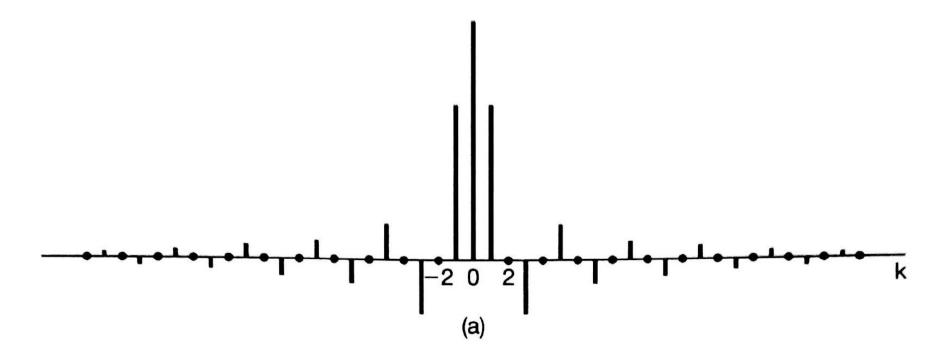
Figure 3.7 Plots of the scaled Fourier series coefficients Ta_k for the periodic square wave with T_1 fixed and for several values of T: (a) $T = 4T_1$; (b) $T = 8T_1$; (c) $T = 16T_1$. The coefficients are regularly spaced samples of the envelope $(2 \sin \omega T_1)/\omega$, where the spacing between samples, $2\pi/T$, decreases as T increases.

SQUARE WAVE

- Special case of rectangle wave with $T = 4T_1$
 - One sample between zero-crossing

$$\mathbf{a}_{k} = \begin{cases} 1/2 & k = 0\\ \frac{\sin(k\pi/2)}{k\pi} & else \end{cases}$$

26



PERIODIC IMPULSE TRAIN

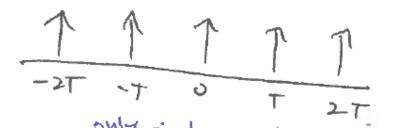
•
$$x(t) = \sum_{k=-\infty}^{\infty} \delta(t - kT)$$

Using FS integral

$$a_k = \frac{1}{T} \int_T x(t) e^{-jk\omega_0 t} dt$$
$$= \frac{1}{T} \int_{-T/2}^{T/2} \sum \delta(t - kT) e^{-jk\omega_0 t} dt$$

• Notice only one impulse in the interval

$$= \frac{1}{T} \int_{-T/2}^{T/2} \delta(t) e^{-jk\omega_0 t} dt$$
$$a_k = \frac{1}{T} \underbrace{\int_{-T/2}^{T/2} \delta(t) e^{-jk\omega_0 0}}_{=1} dt = \frac{1}{T}$$



PROPERTIES OF CTFS

 Since these are very similar between CT and DT, will save until after DT

- Note: As for LT and Z Transform, properties are used to avoid direct evaluation of FS integral
 - Be sure to bookmark properties in Table 3.1 on page 206