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EE361: SIGNALS AND SYSTEMS II

CH3: MULTIPLE RANDOM VARIABLES

1



 A pair of RV (𝑋, 𝑌) that 
associates two real numbers 
with every element in 𝑆

 Two-dimensional random vector

 Function that maps outcome 𝜉
to a point in the (x,y)-plane

 Range of (𝑋, 𝑌)

 𝑅𝑋𝑌 = { 𝑥, 𝑦 ; 𝜉 ∈ 𝑆 and 𝑋 𝜉 = 𝑥, 𝑌 𝜉 = 𝑦}
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BIVARIATE RANDOM VARIABLES



BIVARIATE RV TYPES

Bivariate discrete RV – both 𝑋, 𝑌 discrete

Bivariate continuous RV – both 𝑋, 𝑌 continuous

Bivariate mixed RV – one discrete other continuous 

 In this class will primarily focus on either bivariate 
discrete or continuous, not mixed
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 𝐹𝑋𝑌 𝑥, 𝑦 = 𝑃 𝑋 ≤ 𝑥, 𝑌 ≤ 𝑦

= 𝑃 𝐴 ∩ 𝐵

 Event A: (𝑋 ≤ 𝑥); Event B: (𝑌 ≤ 𝑦)

 Formally, event (𝑋 ≤ 𝑥, 𝑌 ≤ 𝑦)
= event (𝐴 ∩ 𝐵)

 𝐴 = 𝜉 ∈ 𝑆; 𝑋 𝜉 ≤ 𝑥

 𝑃 𝐴 = 𝐹𝑋(𝑥)

 𝐵 = {𝜉 ∈ 𝑆; 𝑌 𝜉 ≤ 𝑦}

 𝑃 𝐵 = 𝐹𝑌(𝑦)

 Independent RV

 𝐹𝑋𝑌 𝑥, 𝑦 = 𝐹𝑋 𝑥 𝐹𝑌 𝑦

= 𝑃 𝐴 𝑃(𝐵)

 Properties – same general idea 
as for single RV
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JOINT DISTRIBUTION FUNCTIONS (CDF)



MARGINAL DISTRIBUTION

 Given joint CDF,

 𝐹𝑋 𝑥 = 𝐹𝑋𝑌(𝑥,∞)

 𝐹𝑌 𝑦 = 𝐹𝑋𝑌(∞, 𝑦)

 These are the distribution taking into account all values of 
the other RV

 E.g. marginalizing/removing the effects/dependence on one variable

 Result comes from observation

 lim𝑦→∞ 𝑋 ≤ 𝑥, 𝑌 ≤ 𝑦 = 𝑋 ≤ 𝑥, 𝑌 ≤ ∞ = (𝑋 ≤ 𝑥)

 The condition (𝑌 ≤ ∞) is always satisfied
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JOINT PMF

 Let (𝑋, 𝑌) be discrete RV with values (𝑥𝑖 , 𝑦𝑗) for an allowable set of 
integers 𝑖, 𝑗

 𝑝𝑋𝑌 𝑥𝑖 , 𝑦𝑗 = 𝑃 𝑋 = 𝑥𝑖 , 𝑌 = 𝑦𝑗

 Properties

 1) 0 ≤ 𝑝𝑋𝑌 𝑥𝑖 , 𝑦𝑗 ≤ 1

 2) σ𝑥𝑖
σ𝑦𝑗 𝑝𝑋𝑌(𝑥𝑖 , 𝑦𝑗) = 1

 3) 𝑃 𝑋, 𝑌 ∈ 𝐴 = σσ(𝑥𝑖,𝑦𝑗)∈𝑅𝐴
𝑝𝑋𝑌(𝑥𝑖 , 𝑦𝑗)

 Points 𝑥𝑖 , 𝑦𝑗 ∈ 𝑅𝐴 are in range space corresponding to event A

 CDF from PMF

 𝐹𝑋𝑌 𝑥, 𝑦 = σ𝑥𝑖≤𝑥
σ𝑦𝑗≤𝑦 𝑝𝑋𝑌(𝑥𝑖 , 𝑦𝑗)

6



MARGINAL PMF

𝑃 𝑋 = 𝑥𝑖 = 𝑃𝑋 𝑥𝑖 = σ𝑦𝑗 𝑝𝑋𝑌 𝑥𝑖 , 𝑦𝑗

 Summation is over all possible 𝑌 = 𝑦𝑗 values

 Marginalize by removing influence of RV 𝑌

𝑃 𝑌 = 𝑦𝑗 = 𝑃𝑌 𝑦𝑗 = σ𝑥𝑖 𝑝𝑋𝑌 𝑥𝑖 , 𝑦𝑗

 Independence:

 𝑃𝑋𝑌 𝑥𝑖 , 𝑦𝑗 = 𝑝𝑋 𝑥𝑖 𝑝𝑌(𝑦𝑗)
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JOINT PDF

 (𝑋, 𝑌) is a continuous bivariate RV with CDF 𝐹𝑋𝑌(𝑥, 𝑦)

 𝑓𝑋𝑌 𝑥, 𝑦 =
𝜕2

𝜕𝑥𝜕𝑦
𝐹𝑋𝑌(𝑥, 𝑦)

 𝐹𝑋𝑌 𝑥, 𝑦 = ∞−
𝑥

∞−
𝑦

𝑓𝑋𝑌 𝜉, 𝜂 𝑑𝜂𝑑𝜉

 Properties:

 1) 𝑓𝑋𝑌 𝑥, 𝑦 ≥ 0

 ∞− (2
∞

∞−
∞

𝑓𝑋𝑌 𝑥, 𝑦 𝑑𝑥𝑑𝑦 = 1

 4) 𝑃 𝑋, 𝑌 ∈ 𝐴 =  𝑅𝐴
𝑓𝑋𝑌 𝑥, 𝑦 𝑑𝑥𝑑𝑦

 5) 𝑃 𝑎 < 𝑋 ≤ 𝑏, 𝑐 < 𝑌 ≤ 𝑑 = 𝑐
𝑑
𝑎
𝑏
𝑓𝑋𝑌 𝑥, 𝑦 𝑑𝑥𝑑𝑦
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MARGINAL PDF

 𝐹𝑋 𝑥 = ∞−
𝑥

∞−
∞

𝑓𝑋𝑌 𝜉, 𝜂 𝑑𝜂𝑑𝜉

 Integrate/marginalize over full range/all values of 𝑦

 𝑓𝑋 𝑥 =
𝑑𝐹𝑋 𝑥

𝑑𝑥
= ∞−

∞
𝑓𝑋𝑌 𝑥, 𝜂 𝑑𝜂 = ∞−

∞
𝑓𝑋𝑌 𝑥, 𝑦 𝑑𝑦

 𝑓𝑌 𝑦 = ∞−
∞

𝑓𝑋𝑌 𝑥, 𝑦 𝑑𝑥

 Independence:

 𝐹𝑋𝑌 𝑥, 𝑦 = 𝐹𝑋 𝑥 𝐹𝑌(𝑦)

 𝑓𝑋𝑌 𝑥, 𝑦 = 𝑓𝑋 𝑥 𝑓𝑌(𝑦)
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CONDITIONAL PMF

 (𝑋, 𝑌) discrete bivariate RV with joint PMF 𝑝𝑋𝑌(𝑥𝑖 , 𝑦𝑗)

 𝑝𝑌|𝑋 𝑦𝑗 𝑥𝑖 =
𝑝𝑋𝑌 𝑥𝑖,𝑦𝑗

𝑝𝑋(𝑥𝑖)
, 𝑝𝑋 𝑥𝑖 > 0

 Conditional PMF of 𝑌 given 𝑋 = 𝑥𝑖  probability of 𝑌 = 𝑦𝑗
knowing that 𝑋 = 𝑥𝑖

 Properties

 1) 0 ≤ 𝑝𝑌|𝑋 𝑦𝑗 𝑥𝑖 ≤ 1

 2) σ𝑦𝑗 𝑝𝑌|𝑋 𝑦𝑗 𝑥𝑖 = 1

 Independence 

 𝑝𝑌|𝑋 𝑦𝑗 𝑥𝑖 = 𝑝𝑌 𝑦𝑗 and   𝑝𝑋|𝑌 𝑥𝑖 𝑦𝑗 = 𝑝𝑋(𝑥𝑖)
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CONDITIONAL PDF

 𝑋, 𝑌 continuous bivariate RV with joint PMF 𝑓𝑋𝑌(𝑥, 𝑦)

 𝑓𝑌|𝑋 𝑦 𝑥 =
𝑓𝑋𝑌 𝑥,𝑦

𝑓𝑋(𝑥)
, 𝑓𝑋 𝑥 > 0

 Conditional PDF of 𝑌 given 𝑋 (= 𝑥)

 Properties

 1) 𝑓𝑌|𝑋 𝑦 𝑥 ≥ 0

 ∞− (2
∞

𝑓𝑌|𝑋 𝑦 𝑥 𝑑𝑦 = 1

 Independence

 𝑓𝑌|𝑋 𝑦 𝑥 = 𝑓𝑌 𝑦 and   𝑓𝑋|𝑌 𝑥, 𝑦 = 𝑓𝑋(𝑥)
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(k,n)th MOMENT

𝑚𝑘𝑛 = 𝐸 𝑋𝑘𝑌𝑛

 Discrete: 𝑚𝑘𝑛 = σ𝑦𝑗
σ𝑥𝑖 𝑥𝑖

𝑘𝑦𝑗
𝑛𝑝𝑋𝑌(𝑥𝑖 , 𝑦𝑗)

 Continuous: 𝑚𝑘𝑛 = ∞−
∞

∞−
∞

𝑥𝑘𝑦𝑛𝑓𝑋𝑌 𝑥, 𝑦 𝑑𝑥𝑑𝑦

Note: 𝑚10 = 𝐸 𝑋 = 𝜇𝑋 and 𝑚01 = 𝐸 𝑌 = 𝜇𝑌
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 Measure of relationship between 
two RV

 𝑚11 = 𝐸[𝑋𝑌]

 Measure away from independence 
(statistical)

 If 𝐸 𝑋𝑌 = 0, then X and Y are 
orthogonal

 Note: orthogonal does not mean 
independent

 Think of an inner product in RV 
space  90 degree angle vs. 
statistical independence

 Note: “correlation does not 
imply causation”

 Just because two variables are 
correlated, does not mean that 
one causes the other

 E.g. increase in ice cream sales 
correlated with increase shark 
attacks.  Probably not ice cream 
causing shark attacks but that ice 
cream and shark attacks happen 
more often during the summer
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CORRELATION



COVARIANCE

𝐶𝑜𝑣 𝑋, 𝑌 = 𝜎𝑋𝑌 = 𝐸 𝑋 − 𝜇𝑋 𝑌 − 𝜇𝑌

= 𝐸 𝑋𝑌 − 𝐸 𝑋 𝐸[𝑌]

 If 𝐶𝑜𝑣 𝑋, 𝑌 = 0  X and Y uncorrelated

 𝐸 𝑋𝑌 = 𝐸 𝑋 𝐸[𝑌]

 Note that independent RV are uncorrelated but 
uncorrelated does not imply independent
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PEARSON’S CORRELATION COEFFICIENT

Measure of linear dependence between X,Y

𝜌 𝑋, 𝑌 = 𝜌𝑋𝑌 =
𝐶𝑜𝑣 𝑋,𝑌

𝜎𝑋𝜎𝑌
=

𝜎𝑋𝑌

𝜎𝑋𝜎𝑌

 𝜌𝑋𝑌 ≤ 1
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 Discrete

 Mean (expectation)

 𝜇𝑌|𝑥𝑖 = 𝐸 𝑌 𝑥𝑖 = σ𝑦𝑗 𝑦𝑗𝑝𝑌|𝑋(𝑦𝑗|𝑥𝑖)

 Variance 

 𝜎𝑌|𝑥𝑖
2 = 𝑉𝑎𝑟 𝑌 𝑥𝑖 = 𝐸 𝑌 − 𝜇𝑌|𝑥𝑖

2
𝑥𝑖

= σ𝑦𝑗 𝑦𝑗 − 𝜇𝑌|𝑥𝑖
2
𝑝𝑌|𝑋 𝑦𝑗 𝑥𝑖

= 𝐸 𝑌2 𝑥𝑖 − 𝐸2 𝑌 𝑥𝑖

 Note: these values are a function of 
𝑥𝑖 and do not depend on 𝑌

 Defined for different 𝑥𝑖 values

 Continuous

 Mean

 𝜇𝑌|𝑋 = 𝐸 𝑌 𝑥 = ∞−
∞

𝑦𝑓𝑌|𝑋 𝑦 𝑥 𝑑𝑦

 Variance

 𝜎𝑌|𝑥𝑖
2 = 𝑉𝑎𝑟 𝑌 𝑥

= 𝐸 𝑌 − 𝜇𝑌|𝑋
2
𝑥

= ∞−
∞

𝑦 − 𝜇𝑌|𝑥
2
𝑓𝑌|𝑋 𝑦 𝑥 𝑑𝑦
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CONDITIONAL MEAN/VARIANCE



N-VARIATE RV

 Natural extension of bivariate discussion

 Give n-tuple of RVs (𝑋1, 𝑋2, … , 𝑋𝑛) – n-dim random 
vector

 Each 𝑋𝑖 𝑖 = 1,2, … , 𝑛 associates a real number to sample 
point 𝜉 ∈ 𝑆

 We won’t really work beyond bivariate in class

 Ex: Joint CDF 𝐹𝑋1𝑋2…𝑋𝑛 𝑥1, 𝑥2, … , 𝑥𝑛 = 𝑃(𝑋1 ≤ 𝑥1, 𝑋2 ≤ 𝑥2, … , 𝑋𝑛 ≤ 𝑥𝑛)
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SPECIAL DISTRIBUTIONS

 Just like with single RV, there are important 
distributions that show up in nature a lot

 Multinomial distribution – extension of binomial

 N-variate Normal distribution 
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MULTINOMIAL DISTRIBUTION

 Multinomial trial (extension of binomial)

 1) Experiment with 𝑘 possible outcomes that are mutually 
exclusive (𝐴1, 𝐴2, … , 𝐴𝑘)

 2) 𝑃 𝐴𝑖 = 𝑝𝑖;   𝑖 = 1,… , 𝑘;   σ𝑖=1
𝑘 𝑝𝑖 = 1

 Multinomial RV

 (𝑋1, 𝑋2, … , 𝑋𝑛) with 𝑋𝑖 be RV denoting number of trials with result 
𝐴𝑖
 Count of number of each outcome

 𝑝𝑋1𝑋2…𝑋𝑘 𝑥1, … , 𝑥𝑘 =
𝑛!

𝑥1!𝑥2!…𝑥𝑘!
𝑝1
𝑥1𝑝2

𝑥2 …𝑝𝑘
𝑥𝑘

 Probability of combination of different outcomes
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MULTINOMIAL EXAMPLE

𝑘 different color balls in a bag  𝑝𝑖 is the 
probability of color 𝑖 to be drawn

Select a ball at random and record the color then 
replace in bag

Count of the colors at the end of the 𝑛 ball draws is 
a multinomial RV

 Distribution tells the probability of seeing e.g. 1 white, 2 
red, 3 blue, and 4 green balls

20



 Bivariate  N-variate

 Vector valued function (see book 
for details)

 Covariance matric

 Note: covariance controls shape 
or orientation in bivariate case
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NORMAL DISTRIBUTION


