EE361: SIGNALS AND SYSTEMS II CH4: CONTINUOUS TIME FOURIER TRANSFORM

http://www.ee.unlv.edu/~b1morris/ee361

FOURIER TRANSFORM DERIVATION

CHAPTER 4.1

FOURIER SERIES REMINDER

 Previously, FS allowed representation of a periodic signal as a linear combination of harmonically related exponentials

•
$$x(t) = \sum_k a_k e^{jk\omega_0 t}$$
 $a_k = \frac{1}{T} \int_T x(t) e^{-jk\omega_0 t} dt$

 Would like to extend this (Transform Analysis) idea to aperiodic (non-periodic) signals

CT FOURIER TRANSFORM DERIVATION I

- Intuition:
- \blacksquare Consider a periodic signal with period T
- $\blacksquare \text{Let } T \to \infty$
 - \blacksquare Infinite period \rightarrow no longer periodic signal
- \blacksquare Results in $\omega_0 = \frac{2\pi}{T} \to 0$
 - \blacksquare Zero frequency space between "harmonics" \rightarrow differential $d\omega$
- Envelope (like we saw with rectangle wave/sinc) defines the CTFT

CT FOURIER TRANSFORM DERIVATION II

- Will skip derivation for now
- Please see details in the book

CT FOURIER TRANSFORM PAIR

•
$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{j\omega t} d\omega$$
 synthesis eq (inverse FT)
• $X(j\omega) = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt$ analysis eq (FT)

Denote

•
$$x(t) \leftrightarrow X(j\omega)$$

•
$$X(j\omega) = \mathcal{F}\{x(t)\}$$

$$x(t) = \mathcal{F}^{-1}\{X(j\omega)\}$$

CTFT CONVERGENCE

There are conditions on signal x(t) for FT to exist

- Finite energy (square integrable)
 - $\int_{-\infty}^{\infty} |x(t)|^2 dt < \infty$
- Dirichlet Conditions
 - We will not cover; see pg 290 for more discussion

CTFT FOR PERIODIC SIGNALS

CHAPTER 4.2

FT OF PERIODIC SIGNALS

- Derived FT by assuming a periodic padding of aperiodic signal x(t)
- What happens for FT of a periodic signal?
 - Note: periodic signal will not have finite energy
 - Cannot evaluate FT integral directly

PERIODIC FT DERIVATION I

From derivation of FT, $X(j\omega)$ is the envelope of Ta_k

- \blacksquare FS coefficients are scaled samples of $X(j\omega)$
- Assume x(t) is periodic [x(t) = x(t + T)]
- Then, $x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}$, with $\omega_0 = \frac{2\pi}{T}$
- Plug into FT integral and solve
- Will not solve for now on slides \rightarrow see book

PERIODIC FT DERIVATION II

Important property

•
$$x(t) = e^{jk\omega_0 t} \leftrightarrow X(j\omega) = 2\pi\delta(\omega - k\omega_0)$$

Transform pair

$$\sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t} \leftrightarrow 2\pi \sum_{k=-\infty}^{\infty} a_k \delta(\omega - k\omega_0)$$

 \blacksquare Each a_k coefficient gets turned into a delta at the harmonic frequency

FT OF SINUSOIDAL SIGNALS

- FT of periodic signals is important because of sinusoidal signals (cannot solve using FT integral)
 - Can use insight of complex exponential ↔ shifted delta from periodic FT derivation

Important examples

 $x(t) = \sin \omega_0 t \xrightarrow{\text{FS}} a_1 = \frac{1}{2j} \qquad \Rightarrow \quad X(j\omega) = \frac{2\pi}{-2j}\delta(\omega + \omega_0) + \frac{2\pi}{2j}\delta(\omega - \omega_0)$ $a_{-1} = -\frac{1}{2j} \qquad \Rightarrow \quad X(j\omega) = -\frac{\pi}{j}\delta(\omega + \omega_0) + \frac{\pi}{j}\delta(\omega - \omega_0)$ $x(t) = \cos \omega_0 t \xrightarrow{\text{FS}} a_1 = \frac{1}{2} \qquad \Rightarrow \quad X(j\omega) = \pi\delta(\omega + \omega_0) + \pi\delta(\omega - \omega_0)$ $a_{-1} = \frac{1}{2}$

CTFT PROPERTIES AND PAIRS

CHAPTER 4.3-4.6

PROPERTIES TABLE 4.1 (PG 328)

- Linearity
 - $x(t) \leftrightarrow X(j\omega)$
 - $y(t) \leftrightarrow Y(j\omega)$
 - $ax(t) + by(t) \leftrightarrow aX(j\omega) + bY(j\omega)$
- Time shifting
 - $x(t-t_0) \leftrightarrow e^{-j\omega t_0} X(j\omega)$
 - Note, this is a phase shift of $X(j\omega)$
- Conjugation
 - $x^*(t) \leftrightarrow X^*(-j\omega)$
 - Remember: conjugation switches sign of imaginary part

- Time scaling
 - $x(at) \leftrightarrow \frac{1}{|a|} X\left(\frac{j\omega}{a}\right)$
- Differentiation in time
 - $\frac{dx(t)}{dt} \leftrightarrow j\omega X(j\omega)$
- Integration in time

•
$$\int_{-\infty}^{t} x(\tau) d\tau \leftrightarrow \frac{1}{j\omega} X(j\omega) + \pi X(0) \delta(\omega)$$

CONVOLUTION/MULTIPLICATION PROPERTIES

Convolution

- $y(t) = h(t) * x(t) \leftrightarrow Y(j\omega) = H(j\omega)X(j\omega)$
- Multiplication

•
$$r(t) = s(t)p(t) \leftrightarrow R(j\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} S(j\theta) P(j(\omega - \theta)) d\theta$$

$$\blacksquare R(j\omega) = \frac{1}{2\pi}S(j\omega) * P(j\omega)$$

 \blacksquare Dual properties – convolution \leftrightarrow multiplication

FT PAIRS TABLE 4.2 (PG 329)

- Be sure to bookmark this table (right next to Table 4.1 Properties)
- Note in particular some very useful pairs that aren't typical

•
$$te^{-at}u(t) \leftrightarrow \frac{1}{(a+j\omega)^2}$$

• $u(t) \leftrightarrow \frac{1}{j\omega} + \pi\delta(\omega)$

repeated root

CTFT AND LTI SYSTEMS

CHAPTER 4.7

FIRST-ORDER EXAMPLE

Find impulse response h(t)

$$\frac{d}{dt}y(t) + ay(t) = x(t)$$
$$j\omega Y(j\omega) + aY(j\omega) = X(j\omega)$$
$$Y(j\omega) [j\omega + a] = X(j\omega)$$

$$H(j\omega) = \frac{Y(j\omega)}{X(j\omega)} = \frac{1}{a+j\omega}$$
$$h(t) = \mathcal{F}^{-1}\left\{\frac{1}{a+j\omega}\right\} = e^{-at}u(t)$$

LTI SYSTEM ANALYSIS

• Note for $H(j\omega)$ to exist, the LTI system must have impulse response h(t) that satisfies stability conditions

FT is only for the analysis of stable LTI systemsFor not stable systems, use Laplace Transform in Ch9

GENERAL DIFFERENTIAL EQUATION SYSTEM

$$\sum_{k=0}^{N} a_k \frac{d^k y(t)}{dt^k} = \sum_{k=0}^{M} b_k \frac{d^k x(t)}{dt^k}$$

Take FT of both sides

$$\sum_{k=0}^{N} a_k \mathcal{F}\left\{\frac{d^k y(t)}{dt^k}\right\} = \sum_{k=0}^{M} b_k \mathcal{F}\left\{\frac{d^k x(t)}{dt^k}\right\}$$
$$\sum_{k=0}^{N} a_k (j\omega)^k Y(j\omega) = \sum_{k=0}^{M} b_k (j\omega)^k X(j\omega)$$
$$Y(j\omega) \left[\sum_{k=0}^{N} a_k (j\omega)^k\right] = X(j\omega) \left[\sum_{k=0}^{M} b_k (j\omega)\right]$$

Solve for frequency response

$$\Rightarrow H(j\omega) = \frac{Y(j\omega)}{X(j\omega)} = \frac{\sum_{k=0}^{M} b_k(j\omega)^k}{\sum_{k=0}^{N} a_k(j\omega)^k}$$

- Rational form ratio of polynomials in *jω*
- Best solved using partial fraction expansion (Appendix A)