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EE361: SIGNALS AND SYSTEMS II

CH4: CONTINUOUS TIME FOURIER TRANSFORM
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FOURIER TRANSFORM DERIVATION
CHAPTER 4.1
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FOURIER SERIES REMINDER

Previously, FS allowed representation of a periodic 
signal as a linear combination of harmonically 
related exponentials

 𝑥 𝑡 = σ𝑘 𝑎𝑘𝑒
𝑗𝑘𝜔0𝑡 𝑎𝑘 =

1

𝑇
𝑇 𝑥 𝑡 𝑒−𝑗𝑘𝜔0𝑡 𝑑𝑡

Would like to extend this (Transform Analysis) idea 
to aperiodic (non-periodic) signals
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CT FOURIER TRANSFORM DERIVATION I

 Intuition:

 Consider a periodic signal with period 𝑇

 Let 𝑇 → ∞

 Infinite period  no longer periodic signal

 Results in 𝜔0 =
2𝜋

𝑇
→ 0

 Zero frequency space between “harmonics”  differential 𝑑𝜔

 Envelope (like we saw with rectangle wave/sinc) defines 
the CTFT
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CT FOURIER TRANSFORM DERIVATION II

Will skip derivation for now

Please see details in the book
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CT FOURIER TRANSFORM PAIR

 𝑥 𝑡 =
1

2𝜋
∞−
∞
𝑋 𝑗𝜔 𝑒𝑗𝜔𝑡𝑑𝜔 synthesis eq (inverse FT)

 𝑋 𝑗𝜔 = ∞−
∞
𝑥 𝑡 𝑒−𝑗𝜔𝑡𝑑𝑡 analysis eq (FT)

 Denote

 𝑥 𝑡 ↔ 𝑋(𝑗𝜔)

 𝑋 𝑗𝜔 = ℱ 𝑥 𝑡 𝑥 𝑡 = ℱ−1 𝑋 𝑗𝜔
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CTFT CONVERGENCE

There are conditions on signal 𝑥(𝑡) for FT to exist

Finite energy (square integrable)

 ∞−
∞

𝑥 𝑡 2𝑑𝑡 < ∞

Dirichlet Conditions

 We will not cover; see pg 290 for more discussion
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CTFT FOR PERIODIC SIGNALS
CHAPTER 4.2
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FT OF PERIODIC SIGNALS

Derived FT by assuming a periodic padding of 
aperiodic signal 𝑥(𝑡)

What happens for FT of a periodic signal?

 Note: periodic signal will not have finite energy

 Cannot evaluate FT integral directly
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PERIODIC FT DERIVATION I

From derivation of FT, 𝑋 𝑗𝜔 is the envelope of 
𝑇𝑎𝑘
 FS coefficients are scaled samples of 𝑋 𝑗𝜔

Assume 𝑥(𝑡) is periodic 𝑥 𝑡 = 𝑥 𝑡 + 𝑇

Then, 𝑥 𝑡 = σ𝑘=−∞
∞ 𝑎𝑘𝑒

𝑗𝑘𝜔0𝑡, with 𝜔0 =
2𝜋

𝑇

Plug into FT integral and solve

Will not solve for now on slides  see book
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PERIODIC FT DERIVATION II

 Important property

 𝑥 𝑡 = 𝑒𝑗𝑘𝜔0𝑡 ↔ 𝑋 𝑗𝜔 = 2𝜋𝛿 𝜔 − 𝑘𝜔0

Transform pair

σ𝑘=−∞
∞ 𝑎𝑘𝑒

𝑗𝑘𝜔0𝑡 ↔ 2𝜋σ𝑘=−∞
∞ 𝑎𝑘𝛿 𝜔 − 𝑘𝜔0

 Each 𝑎𝑘 coefficient gets turned into a delta at the 
harmonic frequency
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FT OF SINUSOIDAL SIGNALS

FT of periodic signals is important because of 
sinusoidal signals (cannot solve using FT integral)

 Can use insight of complex exponential ↔ shifted delta 
from periodic FT derivation 

 Important examples
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CTFT PROPERTIES AND PAIRS
CHAPTER 4.3-4.6
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 Linearity

 𝑥 𝑡 ↔ 𝑋(𝑗𝜔)

 𝑦 𝑡 ↔ 𝑌 𝑗𝜔

 𝑎𝑥 𝑡 + 𝑏𝑦 𝑡 ↔ 𝑎𝑋 𝑗𝜔 + 𝑏𝑌 𝑗𝜔

 Time shifting 

 𝑥 𝑡 − 𝑡0 ↔ 𝑒−𝑗𝜔𝑡0𝑋(𝑗𝜔)

 Note, this is a phase shift of 𝑋 𝑗𝜔

 Conjugation

 𝑥∗ 𝑡 ↔ 𝑋∗ −𝑗𝜔

 Remember: conjugation switches sign of 
imaginary part

 Time scaling

 𝑥 𝑎𝑡 ↔
1

𝑎
𝑋

𝑗𝜔

𝑎

 Differentiation in time


𝑑𝑥 𝑡

𝑑𝑡
↔ 𝑗𝜔𝑋(𝑗𝜔)

 Integration in time

 ∞−
𝑡
𝑥 𝜏 𝑑𝜏 ↔

1

𝑗𝜔
𝑋 𝑗𝜔 +

𝜋𝑋 0 𝛿 𝜔
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PROPERTIES TABLE 4.1 (PG 328)



CONVOLUTION/MULTIPLICATION PROPERTIES

Convolution

 𝑦 𝑡 = ℎ 𝑡 ∗ 𝑥 𝑡 ↔ 𝑌 𝑗𝜔 = 𝐻 𝑗𝜔 𝑋 𝑗𝜔

Multiplication 

 𝑟 𝑡 = 𝑠 𝑡 𝑝 𝑡 ↔ 𝑅 𝑗𝜔 =
1

2𝜋
∞−
∞
𝑆 𝑗𝜃 𝑃 𝑗 𝜔 − 𝜃 𝑑𝜃

 𝑅 𝑗𝜔 =
1

2𝜋
𝑆 𝑗𝜔 ∗ 𝑃 𝑗𝜔

Dual properties – convolution ↔ multiplication
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FT PAIRS TABLE 4.2 (PG 329)

Be sure to bookmark this table (right next to Table 
4.1 Properties)

Note in particular some very useful pairs that 
aren’t typical

 𝑡𝑒−𝑎𝑡𝑢 𝑡 ↔
1

𝑎+𝑗𝜔 2 repeated root

 𝑢 𝑡 ↔
1

𝑗𝜔
+ 𝜋𝛿(𝜔)
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CTFT AND LTI SYSTEMS
CHAPTER 4.7
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FIRST-ORDER EXAMPLE

Find impulse response ℎ(𝑡)
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LTI SYSTEM ANALYSIS

Note for 𝐻 𝑗𝜔 to exist, the LTI system must have 
impulse response ℎ(𝑡) that satisfies stability 
conditions

FT is only for the analysis of stable LTI systems

 For not stable systems, use Laplace Transform in Ch9
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 Take FT of both sides

 Solve for frequency response

 Rational form – ratio of 
polynomials in 𝑗𝜔

 Best solved using partial fraction 
expansion (Appendix A)
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GENERAL DIFFERENTIAL EQUATION SYSTEM


