EE361: SIGNALS AND SYSTEMS II

CH2: RANDOM VARIABLES

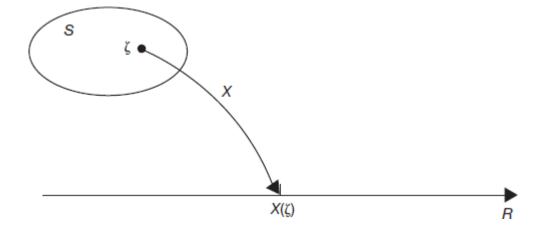
INTRODUCTION

■ A Random Variable is a function that maps an event to a probability (real value)

- Will use distribution functions to describe the functional mapping
 - Example: your score on the midterm is a random variable and the Gaussian distribution explains the probability you achieved a certain value (e.g. 70/100)

RANDOM VARIABLE

- $X(\xi)$ is a single-valued real function that assigns a real number (value) to each sample point (outcome) in a sample space S
 - Often just use *X* for simplicity
 - This is a function (mapping) from sample space S (domain of X) to values (range)
 - This is a many-to-one mapping
 - Different ξ_i may have same value $X(\xi_i)$, but two values cannot come from same outcome



EVENTS DEFINED BY RVS

- Event
 - $(X = x) = \{\xi : X(\xi) = x\}$
 - \blacksquare RV X value is x, a fixed real number
- Similarly,
 - $(x_1 < X \le X_2) = \{ \xi : x_1 < X(\xi) \le x_2 \}$
- Probability of event
 - $P(X = x) = P\{\xi : X(\xi) = x\}$

EXAMPLE: COIN TOSS 3 TIMES

- Sample space $S = \{HHH, HHT, ..., TTT\}, |S| = 2^3 = 8$
- Define RV X as the number of heads after the three tosses
- Find P(X = 2)
 - Event A: $(X = 2) = \{\xi : X(\xi) = 2\} = \{HHT, HTH, HTT\}$
 - By equally likely events
 - $P(A) = P(X = 2) = \frac{|A|}{|S|} = \frac{3}{8}$
- Find P(X < 2)
 - Event B: $(X < 2) = \{\xi : X(\xi) < 2\} = \{\text{HTT, THT, HTT, TTT}\} (1 \text{ or less heads})$
 - By equally likely events
 - $P(B) = P(X < 2) = \frac{|B|}{|S|} = \frac{4}{8} = \frac{1}{2}$

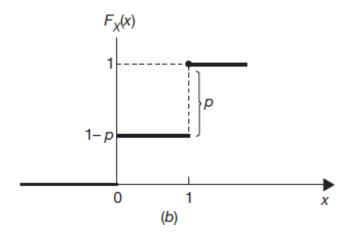
CUMULATIVE DISTRIBUTION FUNCTION (CDF)

- $F_X(x) = P(X \le x) \qquad -\infty < x < \infty$
 - $\blacksquare F$ the CDF
 - $\blacksquare X$ the RV of interest
 - $\blacksquare x$ the value the RV will take

Note: this is an increasing (non-decreasing) function

CDF PROPERTIES

- $\blacksquare 1) \ 0 \le F_X(x) \le 1$
 - Must be less than some maximal value
- $\blacksquare 2) F_X(x_1) \le F_X(x_2)$ if $x_1 < x_2$
 - Non-decreasing function
- **...**
- $\begin{array}{l}
 \bullet 5) \lim_{\substack{x \to a^+ \\ \text{with } a^+ = \lim_{0 < \epsilon \to 0} a + \epsilon}} F_X(x) = F_X(a^+) = F_X(x)
 \end{array}$
 - Continuous from the right



x (value)	Event $(X \le x)$	$\# ext{ elements}$	$F_X(x)$
-1	Ø	0	0
0	$\{TTT\}$	1(1+0)	$\frac{1}{8}$
1			
2			
3			
4			

x (value)	Event $(X \leq x)$	$\mid \# \; ext{elements} \mid$	$F_X(x)$
-1	Ø	0	0
0	$\{TTT\}$	1 (1 + 0)	$\frac{1}{8}$
1	{HTT, THT, TTH, TTT }	4 (3+1)	$\frac{4}{8} = \frac{1}{2}$
2			
3			
4			

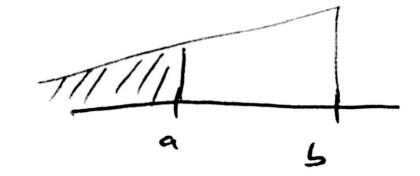
x (value)	Event $(X \le x)$	# elements	$F_X(x)$
-1	Ø	0	0
0	$\{TTT\}$	1(1+0)	$\frac{1}{8}$
1	{HTT, THT, TTH, TTT}	4 (3+1)	$\frac{4}{8} = \frac{1}{2}$
2	{HHT, HTH, THH, HTT, THT, TTH, TTT }	7 (3 + 4)	$\frac{7}{8}$
3			
4			

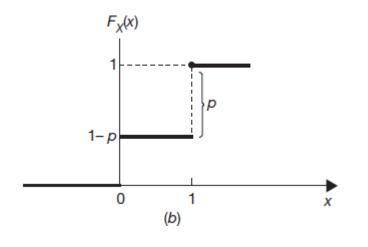
x (value)	Event $(X \le x)$	# elements	$F_X(x)$	
-1	Ø	0	0	
0	${TTT}$	1(1+0)	$\frac{1}{8}$	
1	{HTT, THT, TTH, TTT}	4 (3+1)	$\frac{4}{8} = \frac{1}{2}$	
2	{HHT, HTH, THH, HTT, THT, TTH, TTT}	7 (3 + 4)	$\frac{7}{8}$	
3	{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT}	8 (1 + 7)	1	
4	S	8 (0 + 8)	1	

x (value)	Event $(X \le x)$	# elements	$F_X(x)$	
-1	Ø	0	0	
0	$\{TTT\}$	1 (1 + 0)	$\frac{1}{8}$	
1	{HTT, THT, TTH, TTT}	4 (3+1)	$\frac{4}{8} = \frac{1}{2}$	
2	{HHT, HTH, THH, HTT, THT, TTH, TTT}	7(3+4)	$\frac{7}{8}$	
3	{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT}	8 (1 + 7)	1	
4	S	8 (0 + 8)	1	

PROBABILITIES FROM CDF

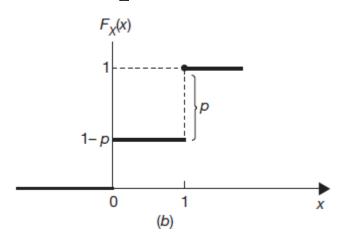
- Completely specify probabilities from a CDF
- 1) $P(a < X \le b) = F_X(b) F_X(a)$ = $P(X \le b) - P(X \le a)$
- $\blacksquare 2) P(X > a) = 1 F_X(a)$
- $\blacksquare 3) P(X < b) = F_X(b^-)$
 - $b^- = \lim_{0 < \epsilon \to 0} b \epsilon$
 - Approach from the left side

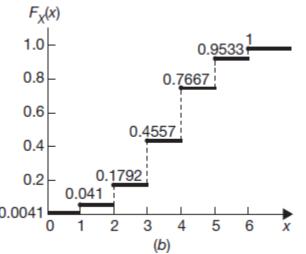


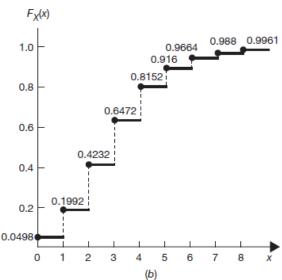


DISCRETE RV

- $\blacksquare X$ is RV with CDF $F_X(x)$ and $F_X(x)$ only changes in jumps (countably many) and is constant between jumps
 - Range of X contains a finite (countably infinite) number of points







PROBABILITY MASS FUNCTION (PMF)

- Given jumps in discrete RV @ points x_1, x_2, \dots and $x_i < x_j$ for i < j
 - $p_X(x) = F_X(x_i) F_X(x_{i-1})$ $= P(X \le x_i) P(X \le x_{i-1}) = P(X = x_i)$
- 3 Coin toss example

x (value)	# elements	$F_X(x)$	$p_X(x)$	Discussion
1	4 (3+1)	$\frac{4}{8} = \frac{1}{2}$	$p_X(1) = \frac{4}{8} - \frac{1}{8} = \frac{3}{8}$	<pre><how from="" more="" much="" needed="" previous="" value=""></how></pre>
2	7(3+4)	$\frac{7}{8}$	$p_X(2) = \frac{7}{8} - \frac{1}{2} = \frac{3}{8}$	3 extra outcomes
3	8 (1 + 7)	1	$p_X(3) = 1 - \frac{7}{8} = \frac{1}{8}$	1 extra outcome

PMF PROPERTIES

- $\blacksquare 1)$ $0 \le p_X(x_k) \le 1$ k = 1, 2, ... (finite set of values)
- $\blacksquare 3) \sum_{k} p_{X}(x_{k}) = 1$

- CDF from PMF
 - $F_X(x) = P(X \le x) = \sum_{x_k \le x} p_X(x_k)$
 - Accumulation of probability mass

CONTINUOUS RV

- X is RV with CDF $F_X(x)$ continuous and has a derivative $\frac{dF_X(x)}{dx}$ exists
 - Range contains an interval of real numbers

- Note: P(X = x) = 0
 - There is zero probability for a particular continuous outcome → only over a range of values

PROBABILITY DENSITY FUNCTION (PDF)

$$f_X(x) = \frac{dF_X(x)}{dx}$$

pdf of X

- Properties
- 1) $f_X(x) \ge 0$
- $2) \int_{-\infty}^{\infty} f_X(x) dx = 1$
- \blacksquare 3) $f_X(x)$ is piecewise continuous

CDF from PDF

$$F_X(x) = P(X \le x) = \int_{-\infty}^x f_X(\xi) d\xi$$

|MEAN|

- Expected value of RV X
- Discrete
 - $\blacksquare \mu_X = E[X] = \sum_k x_k p_X(x_k)$
- Continuous
 - $\blacksquare \mu_X = E[X] = \int_{-\infty}^{\infty} x f_X(x) dx$

MOMENT

- nth moment defined as
- Discrete
 - $\blacksquare E[X^n] = \sum_k x_k^n P_X(x_k)$
- Continuous
 - $E[X^n] = \int_{-\infty}^{\infty} x^n f_X(x) dx$

VARIANCE

•
$$\sigma_X^2 = Var(X) = E[(X - E[X])^2]$$

- E[.] expected value operation
- $E[X] = \mu_X$ mean
- Discrete

Continuous

$$\sigma_X^2 = \int_{-\infty}^{\infty} (x - \mu_X)^2 f_X(x) dx$$

$$Var(X) = E [(X - E[X])^{2}]$$

$$= E[X^{2} - 2X\mu_{X} + \mu_{X}^{2}]$$

$$= E[X^{2}] - 2\mu_{X}E[X] + \mu_{X}^{2}$$

$$= E[X^{2}] - 2\mu_{X}^{2} + \mu_{X}^{2}$$

$$= E[X^{2}] - \mu_{X}^{2}$$

$$= E[X^{2}] - \mu_{X}^{2}$$

$$= E[X^{2}] - \mu_{X}^{2}$$

2nd moment

1st moment

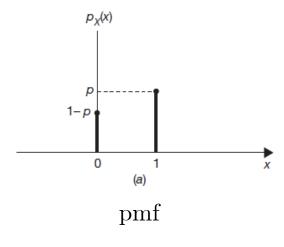
IMPORTANT DISTRIBUTIONS

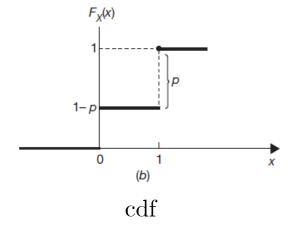
- Model real-world phenomena
- Mathematically convenient specification for probability distribution (usually pmf or pdf)

- Will examine similar discrete and continuous distributions
 - Note: will leave most of content for the book rather than in slides

BERNOULLI DISTRIBUTION

- Binary RV with probability p of 1 ("success") or (1-p) for failure
 - E.g. a coin flip with heads a "success" or "1" and tails a "failure" or "0"
- $p_X(k) = P(X = k) = p^k (1 p)^{1-k}$
 - 0 is probability of success
 - (1-p) is probability of failure
 - k = 0.1



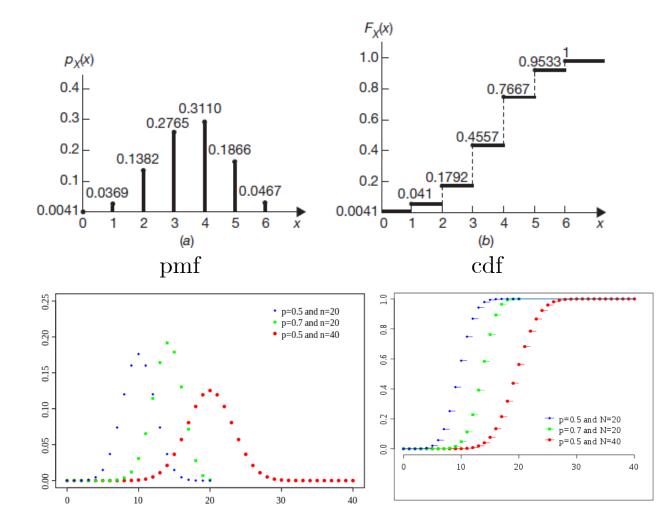


BINOMIAL DISTRIBUTION

RV to count the number of successes with n independent Bernoulli trials

•
$$p_X(k) = P(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}$$

Number of ways to get ksuccesses (heads) in n trials (coin tosses)



CONDITIONAL DISTRIBUTIONS

- Remember $P(A|B) = \frac{P(A \cap B)}{P(B)}$, P(B) > 0
- Conditional CDF
 - $F_X(x|B) = P(X \le x|B) = \frac{P\{(X \le x) \cap B\}}{P(B)}$
- Conditional PMF
 - $p_X(x_k|B) = P(X = x_k|B) = \frac{P\{(X = x_k) \cap B\}}{P(B)}$
- Conditional PDF
 - $f_X(x|B) = \frac{d}{dx} F_X(x|B)$