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EE361: SIGNALS AND SYSTEMS II

CH3: FOURIER SERIES
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FOURIER SERIES OVERVIEW, MOTIVATION, 
AND HIGHLIGHTS
CHAPTER 3.1-3.2
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BIG IDEA: TRANSFORM ANALYSIS

Make use of properties of LTI system to simplify 
analysis

Represent signals as a linear combination of basic 
signals with two properties

 Simple response:  easy to characterize LTI system 
response to basic signal

 Representation power:  the set of basic signals can be 
use to construct a broad/useful class of signals
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 When plucking a string, length 
is divided into integer divisions 
or harmonics

 Frequency of each harmonic is an 
integer multiple of a 
“fundamental frequency”

 Also known as the normal modes

 Any string deflection could be 
built out of a linear 
combination of “modes”
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NORMAL MODES OF VIBRATING STRING



 When plucking a string, length 
is divided into integer divisions 
or harmonics

 Frequency of each harmonic is an 
integer multiple of a 
“fundamental frequency”

 Also known as the normal modes

 Any string deflection could be 
built out of a linear 
combination of “modes”
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NORMAL MODES OF VIBRATING STRING

Caution: turn your sound down

https://youtu.be/BSIw5SgUirg

https://youtu.be/BSIw5SgUirg


 Fourier argued that periodic 
signals (like the single period 
from a plucked string) were 
actually useful

 Represent complex periodic signals

 Examples of basic periodic signals

 Sinusoid: 𝑥 𝑡 = 𝑐𝑜𝑠𝜔0𝑡

 Complex exponential: 𝑥 𝑡 = 𝑒𝑗𝜔0t

 Fundamental frequency: 𝜔0

 Fundamental period: 𝑇 =
2𝜋

𝜔0

 Harmonically related period 
signals form family

 Integer multiple of fundamental 
frequency

 𝜙𝑘 𝑡 = 𝑒𝑗𝑘𝜔0𝑡 for 𝑘 = 0,±1,±2,…

 Fourier Series is a way to 
represent a periodic signal as a 
linear combination of harmonics

 𝑥 𝑡 = σ𝑘=−∞
∞ 𝑎𝑘𝑒

𝑗𝑘𝜔0𝑡

 𝑎𝑘 coefficient gives the contribution 
of a harmonic (periodic signal of 𝑘
times frequency)
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FOURIER SERIES 1 SLIDE OVERVIEW



SAWTOOTH EXAMPLE
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signal
Harmonics: height given by coefficient

Animation showing approximation as more harmonics added
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SQUARE WAVE EXAMPLE

 Better approximation of square 
wave with more coefficients

 Aligned approximations

 Animation of FS 
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http://upload.wikimedia.org/wikipedia/commons/2/2b/Fourier_series_and_transform.gif


ARBITRARY EXAMPLES

 Interactive examples [flash (dated)][html]
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https://1ucasvb.com/stuff/FourierToy.swf
http://beneskildsen.github.io/fourier/fourier.html


RESPONSE OF LTI SYSTEMS TO COMPLEX 
EXPONENTIALS 
CHAPTER 3.2
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TRANSFORM ANALYSIS OBJECTIVE

 Need family of signals 𝑥𝑘 𝑡 that have 1) simple response 
and 2) represent a broad (useful) class of signals

1. Family of signals Simple response – every signal in family pass 
through LTI system with scale change

2. “Any” signal can be represented as a linear combination of 
signals in the family

 Results in an output generated by input 𝑥(𝑡)
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𝑥𝑘(𝑡) ⟶ 𝜆𝑘𝑥𝑘(𝑡)

𝑥 𝑡 = 

𝑘=−∞

∞

𝑎𝑘𝑥𝑘(𝑡)

𝑥 𝑡 ⟶ 

𝑘=−∞

∞

𝑎𝑘𝜆𝑘𝑥𝑘(𝑡)



IMPULSE AS BASIC SIGNAL

Previously (Ch2), we used shifted and scaled deltas

 𝛿 𝑡 − 𝑡0 ⟹ 𝑥 𝑡 = ∫ 𝑥 𝜏 𝛿 𝑡 − 𝜏 𝑑𝜏 ⟶ 𝑦 𝑡 = ∫ 𝑥 𝜏 ℎ 𝑡 − 𝜏 𝑑𝜏

Thanks to Jean Baptiste Joseph Fourier in the early 
1800s we got Fourier analysis

 Consider signal family of complex exponentials

 𝑥 𝑡 = 𝑒𝑠𝑡 or 𝑥 𝑛 = 𝑧𝑛, 𝑠, 𝑧 ∈ ℂ
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 Using the convolution

 𝑒𝑠𝑡 ⟶𝐻 𝑠 𝑒𝑠𝑡

 𝑧𝑛 ⟶𝐻 𝑧 𝑧𝑛

 Notice the eigenvalue 𝐻 𝑠
depends on the value of ℎ(𝑡)
and 𝑠

 Transfer function of LTI system

 Laplace transform of impulse 
response
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COMPLEX EXPONENTIAL AS EIGENSIGNAL



TRANSFORM OBJECTIVE

 Simple response

 𝑥 𝑡 = 𝑒𝑠𝑡 ⟶ 𝑦 𝑡 = 𝐻 𝑠 𝑥 𝑡

 Useful representation?

 𝑥 𝑡 = σ𝑎𝑘𝑒
𝑠𝑘𝑡 ⟶ 𝑦 𝑡 = σ𝑎𝑘𝐻 𝑠𝑘 𝑒𝑠𝑘𝑡

 Input linear combination of complex exponentials leads to output linear 
combination of complex exponentials

 Fourier suggested limiting to subclass of period complex exponentials 
𝑒𝑗𝑘𝜔0𝑡 , 𝑘 ∈ ℤ,𝜔0 ∈ ℝ

 𝑥 𝑡 = σ𝑎𝑘𝑒
𝑗𝑘𝜔0𝑡 ⟶ 𝑦 𝑡 = σ𝑎𝑘𝐻 𝑗𝑘𝜔0 𝑒𝑠𝑘𝑡

 Periodic input leads to periodic output.

 𝐻 𝑗𝜔 = 𝐻 𝑠 ȁ𝑠=𝑗𝜔 is the frequency response of the system
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CONTINUOUS TIME FOURIER SERIES
CHAPTER 3.3-3.8
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CTFS TRANSFORM PAIR

 Suppose 𝑥(𝑡) can be expressed as a linear combination of 
harmonic complex exponentials

 𝑥 𝑡 = σ𝑘=−∞
∞ 𝑎𝑘𝑒

𝑗𝑘𝜔0𝑡 synthesis equation

 Then the FS coefficients {𝑎𝑘} can be found as

 𝑎𝑘 =
1

𝑇
∫𝑇 𝑥(𝑡) 𝑒−𝑗𝑘𝜔0𝑡𝑑𝑡 analysis equation

 𝜔0 - fundamental frequency

 𝑇 = 2𝜋/𝜔0 - fundamental period 

 𝑎𝑘 known as FS coefficients or spectral coefficients
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CTFS PROOF

While we can prove this, it is not well suited for 
slides.

 See additional handout for details

Key observation from proof: Complex exponentials 
are orthogonal
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VECTOR SPACE OF PERIODIC SIGNALS

All signals

Periodic signals, 𝜔0



 Each of the harmonic 
exponentials are orthogonal to 
each other and span the space 
of periodic signals

 The projection of 𝑥(𝑡) onto a 
particular harmonic (𝑎𝑘) gives 
the contribution of that 
complex exponential to 
building 𝑥 𝑡

 𝑎𝑘 is how much of each harmonic 
is required to construct the 
periodic signal 𝑥(𝑡)
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VECTOR SPACE OF PERIODIC SIGNALS

Periodic signals, 𝜔0

𝑥(𝑡)

𝑒𝑗0𝑡 = 1
𝑎0

𝑒𝑗(−𝜔0)𝑡

𝑒𝑗𝜔0𝑡

𝑒𝑗2𝜔0𝑡

𝑒𝑗𝑘𝜔0𝑡

𝑎−1

𝑎1

𝑎2

𝑎𝑘



HARMONICS

 𝑘 = ±1 ⇒ fundamental component (first harmonic) 

 Frequency 𝜔0, period 𝑇 = 2𝜋/𝜔0

 𝑘 = ±2 ⇒ second harmonic

 Frequency 𝜔2 = 2𝜔0, period 𝑇2 = 𝑇/2 (half period)

 …

 𝑘 = ±𝑁 ⇒ Nth harmonic

 Frequency 𝜔𝑁 = 𝑁𝜔0, period 𝑇𝑁 = 𝑇/𝑁 (1/N period)

 𝑘 = 0 ⇒ 𝑎0 =
1

𝑇
∫𝑇 𝑥 𝑡 𝑑𝑡, DC, constant component, average 

over a single period
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HOW TO FIND FS REPRESENTATION

Will use important examples to demonstrate 
common techniques

Sinusoidal signals – Euler’s relationship

Direct FS integral evaluation

FS properties table and transform pairs
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 𝑥 𝑡 = 1 +
1

2
cos 2𝜋𝑡 + sin 3𝜋𝑡

 First find the period 

 Constant 1 has arbitrary period

 cos 2𝜋𝑡 has period 𝑇1 = 1

 sin 3𝜋𝑡 has period 𝑇2 = 2/3

 𝑇 = 2, 𝜔0 = 2𝜋/𝑇 = 𝜋

 Rewrite 𝑥 𝑡 using Euler’s and read off 𝑎𝑘
coefficients by inspection

 𝑥 𝑡 = 1 +
1

4
𝑒𝑗2𝜔0𝑡 + 𝑒−𝑗2𝜔0𝑡 +

1

2𝑗
𝑒𝑗3𝜔0𝑡 − 𝑒−𝑗3𝜔0𝑡

 Read off coeff. directly

 𝑎0 = 1

 𝑎1 = 𝑎−1 = 0

 𝑎2 = 𝑎−2 = 1/4

 𝑎3 = 1/2𝑗, 𝑎−3 = −1/2𝑗

 𝑎𝑘 = 0, else
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SINUSOIDAL SIGNAL



 𝑥 𝑡 = ቐ
1 𝑡 < 𝑇1

0 𝑇1 < 𝑡 <
𝑇

2
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PERIODIC RECTANGLE WAVE



 Important signal/function in 
DSP and communication

 sinc 𝑥 =
sin 𝜋𝑥

𝜋𝑥
normalized

 sinc 𝑥 =
sin 𝑥

𝑥
unnormalized

 Modulated sine function

 Amplitude follows 1/x

 Must use L’Hopital’s rule to get 
x=0 time
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SINC FUNCTION



 Consider different “duty cycle” for 
the rectangle wave

 𝑇 = 4𝑇1 50% (square wave)

 𝑇 = 8𝑇1 25%

 𝑇 = 16𝑇1 12.5%

 Note all plots are still a sinc
shape

 Difference is how the sync is sampled

 Longer in time (larger T) smaller 
spacing in frequency  more samples 
between zero crossings
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RECTANGLE WAVE COEFFICIENTS



 Special case of rectangle wave 
with 𝑇 = 4𝑇1

 One sample between zero-crossing

 𝑎𝑘 = ቐ
1/2 𝑘 = 0

sin(𝑘𝜋/2)

𝑘𝜋
𝑒𝑙𝑠𝑒
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SQUARE WAVE



 𝑥 𝑡 = σ𝑘=−∞
∞ 𝛿(𝑡 − 𝑘𝑇)

 Using FS integral

 Notice only one impulse in the interval
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PERIODIC IMPULSE TRAIN



PROPERTIES OF CTFS

Since these are very similar between CT and DT, 
will save until after DT

Note: As for LT and Z Transform, properties are 
used to avoid direct evaluation of FS integral

 Be sure to bookmark properties in Table 3.1 on page 206
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DISCRETE TIME FOURIER SERIES
CHAPTER 3.6
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DTFS VS CTFS DIFFERENCES

While quite similar to the CT case,

 DTFS is a finite series, 𝑎𝑘 , k < K

 Does not have convergence issues

Good News: motivation and intuition from CT 
applies for DT case
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DTFS TRANSFORM PAIR

 Consider the discrete time periodic signal 𝑥 𝑛 = 𝑥 𝑛 + 𝑁

 𝑥 𝑛 = σ𝑘=<𝑁> 𝑎𝑘𝑒
𝑗𝑘𝜔0𝑛 synthesis equation

 𝑎𝑘 =
1

𝑁
σ𝑛=<𝑁> 𝑥 𝑛 𝑒−𝑗𝑘𝜔0𝑛 analysis equation

 𝑁 – fundamental period (smallest value such that periodicity 
constraint holds)

 𝜔0 = 2𝜋/𝑁 – fundamental frequency

 σ𝑛=<𝑁> indicates summation over a period (𝑁 samples)
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DTFS REMARKS

DTFS representation is a finite sum, so there is 
always pointwise convergence

FS coefficients are periodic with period N
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DTFS PROOF

Proof for the DTFS pair is similar to the CT case

Relies on orthogonality of harmonically related DT 
period complex exponentials

Will not show in class
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HOW TO FIND DTFS REPRESENTATION

Like CTFS, will use important examples to 
demonstrate common techniques

Sinusoidal signals – Euler’s relationship

Direct FS summation evaluation – periodic 
rectangular wave and impulse train

FS properties table and transform pairs
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 𝑥[𝑛] = 1 +
1

2
cos

2𝜋

𝑁
𝑛 + sin

4𝜋

𝑁
𝑛

 First find the period

 Rewrite 𝑥[𝑛] using Euler’s and 
read off 𝑎𝑘 coefficients by 
inspection

 Shortcut here

 𝑎0 = 1, 𝑎±1 =
1

4
, 𝑎2 = 𝑎−2

∗ =
1

2𝑗

35

SINUSOIDAL SIGNAL



 𝑥(𝑡) = cos𝜔0𝑡

 𝑎𝑘 = ቊ
1/2 𝑘 = ±1
0 𝑒𝑙𝑠𝑒

 𝑥 𝑛 = cos𝜔0𝑛

 𝑎𝑘 = ቊ
1/2 𝑘 = ±1
0 𝑒𝑙𝑠𝑒

 Over a single period  must 
specify period with period N
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SINUSOIDAL COMPARISON



 Type equation here.
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PERIODIC RECTANGLE WAVE



 Consider different “duty cycle” for 
the rectangle wave

 50% (square wave)

 25%

 12.5%

 Note all plots are still a sinc
shaped, but periodic

 Difference is how the sync is sampled

 Longer in time (larger N) smaller 
spacing in frequency  more samples 
between zero crossings
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RECTANGLE WAVE COEFFICIENTS



 𝑥[𝑛] = σ𝑘=−∞
∞ 𝛿[𝑛 − 𝑘𝑁]

 Using FS integral

 Notice only one impulse in the interval
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PERIODIC IMPULSE TRAIN



PROPERTIES OF FOURIER SERIES
CHAPTER 3.5, 3.7
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PROPERTIES OF FOURIER SERIES

 See Table 3.1 pg. 206 (CT) and Table 3.2 pg. 221 (DT)

 In the following slides, suppose:

 Most times, will only show proof for one of CT or DT
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 CT

 𝐴𝑥 𝑡 + 𝐵𝑦 𝑡 ⟷ 𝐴𝑎𝑘 + 𝐵𝑏𝑘

 DT

 𝐴𝑥 𝑛 + 𝐵𝑦 𝑛 ⟷ 𝐴𝑎𝑘 + 𝐵𝑏𝑘
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LINEARITY



 CT

 𝑥(𝑡 − 𝑡0) ⟷ 𝑎𝑘𝑒
−𝑗𝑘𝜔0𝑡0

 Proof

 Let 𝑦 𝑡 = 𝑥(𝑡 − 𝑡0)

 DT

 𝑥[𝑛 − 𝑛0] ⟷ 𝑎𝑘𝑒
−𝑗𝑘𝜔0𝑛0
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TIME-SHIFT



 CT

 𝑒𝑗𝑀𝜔0𝑡𝑥 𝑡 ⟷ 𝑎𝑘−𝑀

 DT

 𝑒𝑗𝑀𝜔0𝑛𝑥 𝑛 ⟷ 𝑎𝑘−𝑀
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FREQUENCY SHIFT

Note: Similar relationship with Time Shift (dualilty).  Multiplication 
by exponential in time is a shift in frequency. Shift in time is a 
multiplication by exponential in frequency.



 CT

 𝑥(−𝑡) ⟷ 𝑎−𝑘

 DT

 𝑥[−𝑛] ⟷ 𝑎−𝑘
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TIME REVERSAL



 CT

 ∫𝑇 𝑥 𝜏 𝑦 𝑡 − 𝜏 𝑑𝜏 ⟷ 𝑇𝑎𝑘𝑏𝑘

 DT

 σ𝑟=<𝑁> 𝑥 𝑟 𝑦[𝑛 − 𝑟] ⟷ 𝑁𝑎𝑘𝑏𝑘
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PERIODIC CONVOLUTION



 CT

 𝑥 𝑡 𝑦(𝑡) ⟷ σ𝑙=−∞
∞ 𝑎𝑙𝑏𝑘−𝑙 = 𝑎𝑘 ∗ 𝑏𝑘

 DT

 𝑥 𝑛 𝑦[𝑛] ⟷ σ𝑙=<𝑁>𝑎𝑙𝑏𝑘−𝑙 = 𝑎𝑘 ∗ 𝑏𝑘

 Convolution over a single period 
(DT FS is periodic)
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MULTIPLICATION

Note: Similar relationship with Convolution (dualilty). Convolution 
in time results in multiplication in frequency domain. Multiplication 
in time results in convolution in frequency domain.



 CT


1

𝑇
∫𝑇 𝑥 𝑡 2𝑑𝑡 = σ𝑘=−∞

∞ 𝑎𝑘
2

 DT


1

𝑁
σ𝑛=<𝑁> 𝑥 𝑛 2 = σ𝑘=<𝑁> 𝑎𝑘

2
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PARSEVAL’S RELATION

Note: Total average power in a periodic signal equals the sum of the 
average power in all its harmonic components

1

T
න
𝑇

𝑎𝑘𝑒
𝑗𝑘𝜔0𝑡

2
𝑑𝑡 =

1

𝑇
න
𝑇

𝑎𝑘
2𝑑𝑡 = 𝑎𝑘

2

Average power in the 𝑘th harmonic



 CT

 𝑥(𝛼𝑡) ⟷ 𝑎𝑘

 𝛼 > 0

 Periodic with period 𝑇/𝛼

 DT

 𝑥(𝑚) 𝑛 = ቊ
𝑥[𝑛/𝑚] 𝑛 multiple of 𝑚

0 𝑒𝑙𝑠𝑒

 Periodic with period 𝑚𝑁

 𝑥(𝑚)[𝑛] ⟷
1

𝑚
𝑎𝑘

 Periodic with period 𝑚𝑁
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TIME SCALING

Note: Not all properties are exactly the same. Must be careful due to 
constraints on periodicity for DT signal.



FOURIER SERIES AND LTI SYSTEMS
CHAPTER 3.8
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EIGENSIGNAL REMINDER

 𝑥 𝑡 = 𝑒𝑠𝑡 ⟷ 𝑦 𝑡 = 𝐻 𝑠 𝑒𝑠𝑡 𝑥 𝑛 = 𝑧𝑛 ⟷ 𝑦 𝑛 = 𝐻 𝑧 𝑧𝑛

 𝐻 𝑠 = ∫−∞
∞
ℎ 𝑡 𝑒−𝑠𝑡𝑑𝑡 𝐻 𝑧 = σ𝑛=−∞

∞ ℎ 𝑛 𝑧−𝑘

 𝐻 𝑠 ,𝐻 𝑧 known as system function (𝑠, 𝑧 ∈ ℂ)

 For Fourier Analysis (e.g. FS)

 Let 𝑠 = 𝑗𝜔 and 𝑧 = 𝑒𝑗𝜔

 Frequency response (system response to particular input frequency)

 𝐻 𝑗𝜔 = 𝐻 𝑠 ȁ𝑠=𝑗𝜔 = ∫−∞
∞
ℎ 𝑡 𝑒−𝑗𝜔𝑡𝑑𝑡

 𝐻 𝑒𝑗𝜔 = 𝐻 𝑧 ȁ
𝑧=𝑒𝑗𝜔 = σ𝑛=−∞

∞ ℎ 𝑛 𝑒−𝑗𝜔𝑛
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FOURIER SERIES AND LTI SYSTEMS I

 Consider now a FS representation of a periodic signals

 𝑥 𝑡 = σ𝑘 𝑎𝑘𝑒
𝑗𝑘𝜔0𝑡

 → 𝑦 𝑡 = σ𝑘 𝑎𝑘𝐻 𝑗𝑘𝜔0 𝑒𝑗𝑘𝜔0𝑡

 Due to superposition (LTI system)

 Each harmonic in results in harmonic out with eigenvalue 

 𝑦(𝑡) periodic with same fundamental frequency as 𝑥(𝑡) ⇒ 𝜔0

 𝑇 =
2𝜋

𝜔0
- fundamental period

 FS coefficients for 𝑦 𝑡

 𝑏𝑘 = 𝑎𝑘𝐻(𝑗𝑘𝜔0)

 𝑏𝑘 is the FS coefficient 𝑎𝑘 multiplied/affected by frequency response at 𝑘𝜔0
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FOURIER SERIES AND LTI SYSTEMS III

System block diagram
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𝑎−𝑘𝑒
−𝑗𝑘𝜔0𝑡 𝐻(𝑗𝜔)

𝑥 𝑡 =

𝑦(𝑡)𝑎0𝑒
𝑗(0)𝜔0𝑡 𝐻(𝑗𝜔)

𝑎𝑘𝑒
𝑗𝑘𝜔0𝑡 𝐻(𝑗𝜔)

⋮

⋮

𝑎−𝑘𝐻(−𝑗𝑘𝜔0)𝑒
−𝑗𝑘𝜔0𝑡

𝑎𝑘𝐻(𝑗𝑘𝜔0)𝑒
−𝑗𝑘𝜔0𝑡

𝑎0𝐻(−𝑗0)



DTFS AND LTI SYSTEMS

 𝑥 𝑛 = σ𝑘=<𝑁>𝑎𝑘𝑒
𝑗𝑘2𝜋/𝑁𝑛 →

𝑦 𝑛 = 

𝑘=<𝑁>

𝑎𝑘𝐻(𝑒
𝑗
2𝜋
𝑁
𝑘)𝑒𝑗𝑘2𝜋/𝑁𝑛

Same idea as in the continuous case

 Each harmonic is modified by the Frequency Response 
at the harmonic frequency
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 LTI system with 

 ℎ 𝑛 = 𝛼𝑛𝑢 𝑛 ,−1 < 𝛼 < 1

 Find FS of 𝑦[𝑛] given input

 𝑥 𝑛 = cos
2𝜋𝑛

𝑁

 Find FS representation of 𝑥[𝑛]

 𝜔0 = 2𝜋/𝑁

 𝑥 𝑛 =
1

2
𝑒𝑗2𝜋/𝑁𝑛 +

1

2
𝑒−𝑗2𝜋/𝑁𝑛

 𝑎𝑘 = ൝
1

2
𝑘 = ±1,± 𝑁 + 1 ,…

0 else

 Find frequency response 

 𝐻 𝑒𝑗𝜔 = σ𝑛 ℎ 𝑛 𝑒−𝑗𝜔𝑛

 𝐻 𝑒𝑗𝜔 = σ𝑛𝛼
𝑛𝑢[𝑛]𝑒−𝑗𝜔𝑛
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EXAMPLE 1

𝐻 𝑗𝜔 = 

𝑛=0

∞

𝛼𝑛𝑒−𝑗𝜔𝑛

𝐻 𝑗𝜔 = 

𝑛=0

∞

𝛼𝑒−𝑗𝜔
𝑛

Let 𝛽 = 𝛼𝑒−𝑗𝜔

𝐻 𝑗𝜔 =
1

1 − 𝛽

𝐻 𝑗𝜔 =
1

1 − 𝛼𝑒−𝑗𝜔



EXAMPLE 1 II

 Use FS LTI relationship to find output

 𝑦 𝑛 = σ𝑘=<𝑁> 𝑎𝑘𝐻(𝑒
𝑗𝑘𝜔0) 𝑒𝑗𝑘𝜔0𝑛

 𝑦 𝑛 =
1

2
𝐻 𝑒𝑗1

2𝜋

𝑁
𝑛 𝑒𝑗1

2𝜋

𝑁
𝑛 +

1

2
𝐻 𝑒−𝑗1

2𝜋

𝑁
𝑛 𝑒−𝑗1

2𝜋

𝑁
𝑛

 𝑦 𝑛 =
1

2

1

1−𝛼𝑒−𝑗𝑘2𝜋/𝑁
𝑒𝑗

2𝜋

𝑁
𝑛 +

1

2

1

1−𝛼𝑒𝑗𝑘2𝜋/𝑁
𝑒−𝑗

2𝜋

𝑁
𝑛

 Output FS coefficients

 𝑏𝑘 = ൝
1

2

1

1−𝛼𝑒−𝑗𝑘2𝜋/𝑁
𝑘 = ±1

0 𝑒𝑙𝑠𝑒
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Periodic with period 𝑁



 𝑥(𝑡) has fundamental period 𝑇
and FS 𝑎𝑘

 Sometimes direct calculation of 
𝑎𝑘 is difficult, at times easier 
to calculate transformation

 𝑏𝑘 ↔ 𝑔 𝑡 =
𝑑𝑥 𝑡

𝑑𝑡

 Find 𝑎𝑘 in terms of 𝑏𝑘 and 𝑇, 
given

 ∫𝑇
2𝑇
𝑥 𝑡 𝑑𝑡 = 2

 𝑎0 =
1

𝑇
∫𝑇 𝑥 𝑡 𝑒−𝑗 0 𝜔0𝑡𝑑𝑡 =

1

𝑇
∫𝑇 𝑥 𝑡 𝑑𝑡 ⇒

2

𝑇

 From Table 3.1 pg 206

 𝑏𝑘 ↔ 𝑗𝑘
2𝜋

𝑇
𝑎𝑘 ⇒ 𝑎𝑘 =

𝑏𝑘

𝑗𝑘2𝜋/𝑇

 𝑎𝑘 = ቐ
2/𝑇 𝑘 = 0
𝑏𝑘

𝑗𝑘2𝜋/𝑇
𝑘 ≠ 0
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EXAMPLE PROBLEM 3.7



EXAMPLE PROBLEM 3.7 II

 Find FS of periodic sawtooth wave

 Take derivative of sawtooth

 Results in sum of rectangular waves

 FS coefficients of rectangular waves from Table 3.2 to get 𝑏𝑘 ↔ 𝑔(𝑡)

 Then use previous result to find 𝑎𝑘 ↔ 𝑥(𝑡)

 See examples 3.6, 3.7 for similar treatment

58



CHAPTER 3.9
FILTERING
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FILTERING

 Important process in many applications

The goal is to change the relative amplitudes of 
frequency components in a signal

 In EE480: DSP you can learn how to design a filter with 
desired properties/specifications
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LTI FILTERS

 Frequency-shaping filters – general LTI systems

 Frequency-selective filters – pass some frequencies and 
eliminate others

 Common examples include low-pass (LP), high-pass (HP), 
bandpass (BP), and bandstop (BS) [notch]
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MOTIVATION: AUDIO EQUALIZER

 Basic equalizer gives user ability to adjust sound from to 
match taste – e.g. bass (low freq) and treble (high freq)
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 Log-log plot to show larger 
range of frequencies and 
response

dB = 20 log10 𝐻 𝑗𝜔

 Magnitude response matches are 
intuition
 Boost low and high frequencies 

but attenuate mid frequencies 



EXAMPLE: DERIVATIVE FILTER

𝑦 𝑡 =
𝑑

𝑑𝑡
𝑥 𝑡 ⟷ 𝐻 𝑗𝜔 = 𝑗𝜔

High-pass filter used for “edge” detection
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EXAMPLE: AVERAGE FILTER

 𝑦 𝑛 =
1

2
𝑥 𝑛 + 𝑥 𝑛 − 1

 Low-pass filter used for smoothing
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MATLAB FOR FILTERS

Very helpful to visualize filters
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SUMMARY
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 Continuous Case

 𝑥 𝑡 = σ𝑘 𝑎𝑘𝑒
𝑗𝑘𝜔0𝑡

 𝑎𝑘 =
1

𝑇
∫𝑇 𝑥 𝑡 𝑒−𝑗𝑘𝜔0𝑡𝑑𝑡

 Fundamental frequency 𝜔0

 Fundamental period 𝑇 =
2𝜋

𝜔0

 Discrete Case

 𝑥[𝑛] = σ𝑘=<𝑁>𝑎𝑘𝑒
𝑗𝑘𝜔0𝑛

 𝑎𝑘 =
1

𝑁
σ𝑛=<𝑁> 𝑥 𝑛 𝑒−𝑗𝑘𝜔0𝑛

 Fundamental frequency 𝜔0

 Fundamental period 𝑁 =
2𝜋

𝜔0
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FOURIER SERIES SUMMARY


