EE361: SIGNALS AND SYSTEMS II

CH5: RANDOM PROCESSES

http://www.ee.unlv.edu/~b1morris/ee361

NOTE ON CONTENT

■ We will only cover 5.1-5.4.C

 Lots of other great content will be skipped (such as types of Random Processes)

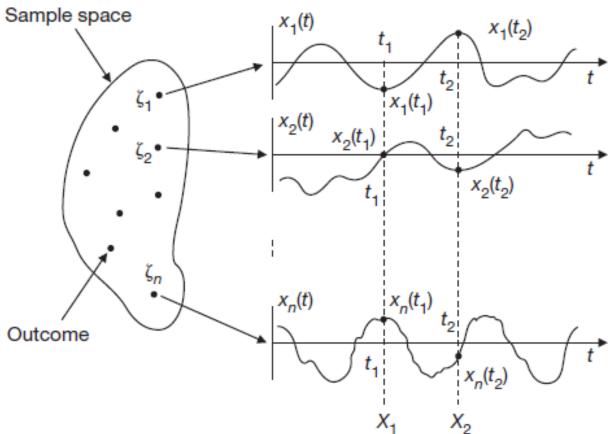
INTRODUCTION

- Random signal signals that take a random value at any given time and must be characterized statistically
- E.g. noise in a physical system (static on microphone)
 When observing a random signal over time, there may be regularities that can be described using a probabilistic model
 - $\blacksquare \rightarrow$ Random process

RANDOM (STOCHASTIC) PROCESS DEFINITION

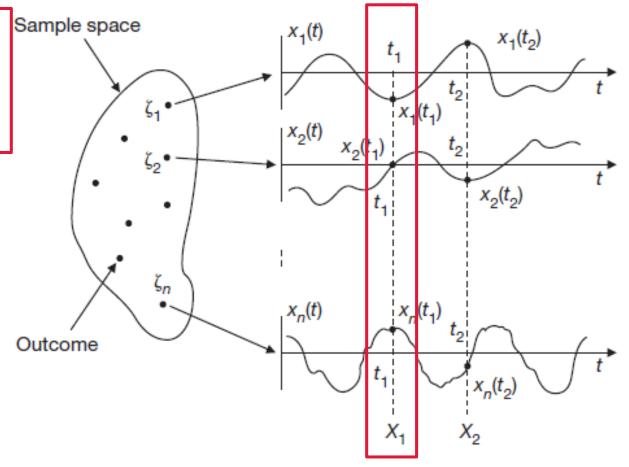
- A RP is a family of RVs $\{X(t), t \in T\}$ defined on a probability space, indexed by parameter t, where t varies over index set T
- Note: since a RV is a function defined over a sample space S, a RP is really a function of two arguments $\{X(t,\xi), t \in T, \xi \in S\}$

- $\blacksquare \operatorname{RP} : \{X(t,\xi), t \in T, \xi \in S\}$
- Fixed $t = t_k$
 - $X(t_k,\xi) = X_k(\xi) = X$
 - Random variable (depends on $\xi \in S)$
- Fixed $\xi = \xi_i \in S$
 - $X(t,\xi_i) = X_i(t)$
 - Single function of time t
 - Sample function or realization of process
 - All sample functions (totality of all realizations) is known as an ensemble
- Fixed $t = t_k$ and $\xi = \xi_i$
 - $X(t_k, \xi_i)$ is a real number

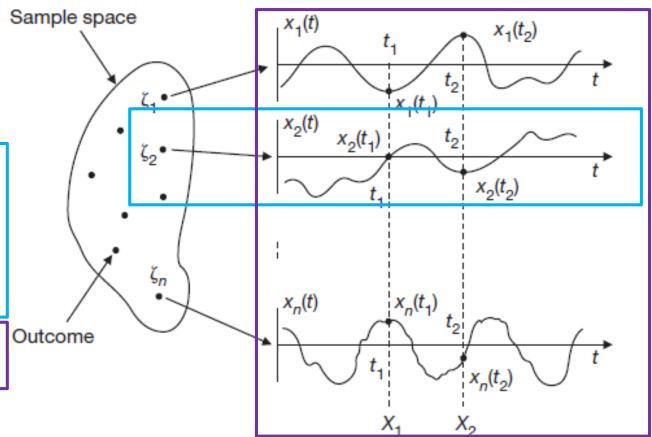


$\blacksquare \operatorname{RP}: \{X(t,\xi), t \in T, \xi \in S\}$

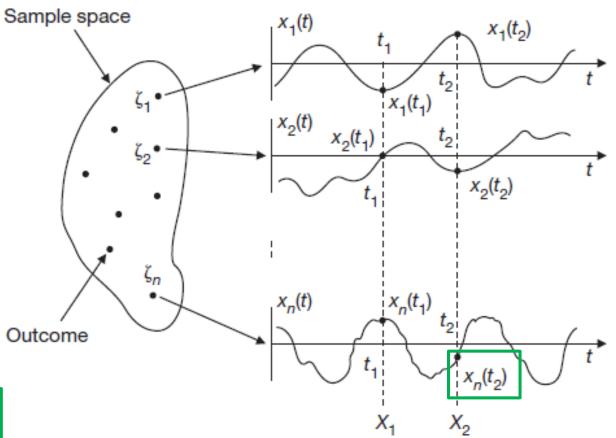
- Fixed $t = t_k$
 - $X(t_k,\xi) = X_k(\xi) = X$
 - Random variable (depends on $\xi \in S)$
- Fixed $\xi = \xi_i \in S$
 - $X(t,\xi_i) = X_i(t)$
 - Single function of time t
 - Sample function or realization of process
 - All sample functions (totality of all realizations) is known as an ensemble
- Fixed $t = t_k$ and $\xi = \xi_i$
 - $X(t_k, \xi_i)$ is a real number



- $\blacksquare \operatorname{RP}: \{X(t,\xi), t \in T, \xi \in S\}$
- Fixed $t = t_k$
 - $X(t_k, \xi) = X_k(\xi) = X$
 - Random variable (depends on $\xi \in S)$
- Fixed $\xi = \xi_i \in S$
 - $X(t,\xi_i) = X_i(t)$
 - Single function of time t
 - Sample function or realization of process
 - All sample functions (totality of all realizations) is known as an ensemble
- Fixed $t = t_k$ and $\xi = \xi_i$
 - $X(t_k, \xi_i)$ is a real number

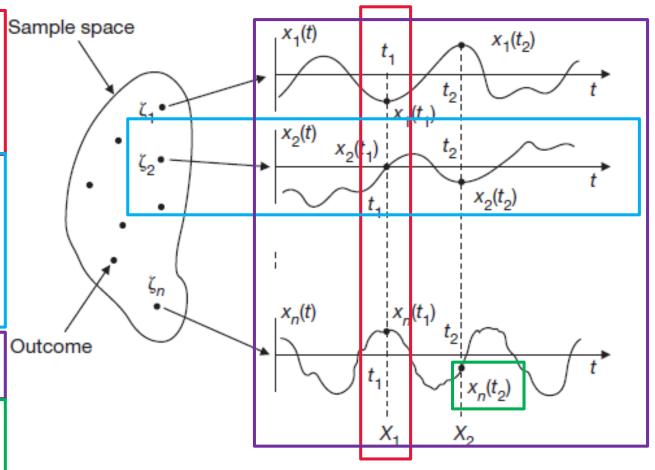


- $\blacksquare \operatorname{RP}: \{X(t,\xi), t \in T, \xi \in S\}$
- Fixed $t = t_k$
 - $X(t_k,\xi) = X_k(\xi) = X$
 - Random variable (depends on $\xi \in S)$
- Fixed $\xi = \xi_i \in S$
 - $X(t,\xi_i) = X_i(t)$
 - Single function of time t
 - Sample function or realization of process
 - All sample functions (totality of all realizations) is known as an ensemble
- Fixed $t = t_k$ and $\xi = \xi_i$
 - $X(t_k, \xi_i)$ is a real number



$\blacksquare \operatorname{RP}: \{X(t,\xi), t \in T, \xi \in S\}$

- Fixed $t = t_k$
 - $X(t_k,\xi) = X_k(\xi) = X$
 - Random variable (depends on $\xi \in S$)
- Fixed $\xi = \xi_i \in S$
 - $X(t,\xi_i) = X_i(t)$
 - Single function of time t
 - Sample function or realization of process
 - All sample functions (totality of all realizations) is known as an ensemble
- Fixed $t = t_k$ and $\xi = \xi_i$
 - $X(t_k, \xi_i)$ is a real number



Random coin flip experiment
 $S = \{H, T\}$

10

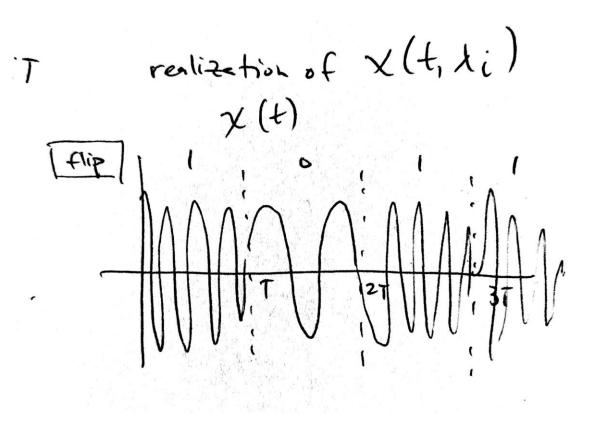
- $X(t,H) = x_1(t) = \sin \omega_1 t$
- $X(t,T) = x_2(t) = \sin \omega_2 t$
 - ω_1, ω_2 fixed numbers
- X(t) is a random signal with $x_1(t), x_2(t)$ as sample functions
- Note: $x_1(t), x_2(t)$ are deterministic, randomness comes from the coin flip

Flip a coin repeatedly and observe sequence of outcomes

•
$$S = \{\lambda_i, i = 1, 2, ...\}$$
 where $\lambda_i = H$ or T

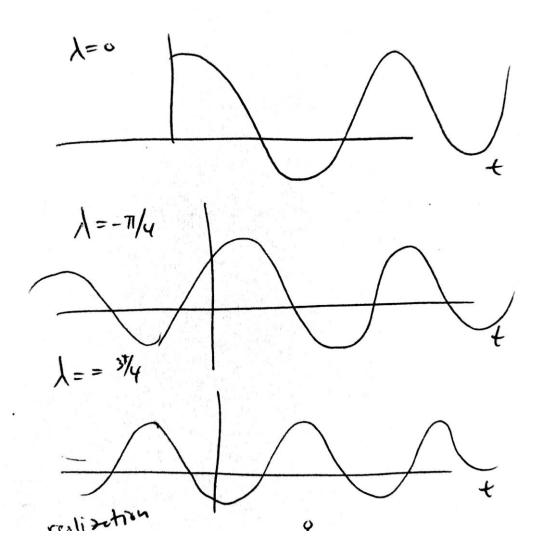
- $X(t, \lambda_i) = \sin(\Omega_i t)$
 - $(i-1)T \le t \le iT$

- The signal X(t) is composed of sections of sinusoids with different frequency
 - E.g. flips are bits to be sent in comm



11

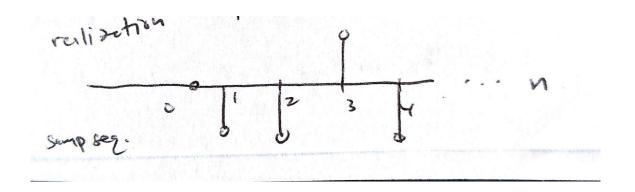
- Random signal defined with a RV
- $X(t) = a\cos(\omega_0 t + \Theta)$
 - $\Theta \sim U[0,2\pi]$
 - $\Theta(\xi) = \lambda \quad \forall \xi \in S = [0, 2\pi]$
- $X(t,\xi) = a\cos(\omega_0 t + \lambda)$
 - $0 \le \lambda \le 2\pi$
 - Ensemble of cosines with same amplitude a and frequency ω_0 but with different phase λ



 $\blacksquare X_1, X_2, \ldots$ independent RV with

•
$$P\{X_n = 1\} = P\{X_n = -1\} = \frac{1}{2}$$

- Let
 - $X(n) = \{X_n, n \ge 0\}$
 - $X_0 = 0$



Define a DT random sequence

DESCRIPTION OF RANDOM PROCESS

- Given RP $\{X(t), t \in T\}$
 - T parameter set
 - X(t) values states
 - All possible values/states make up the state space E
 - E state space
- Discrete T set discreteparameter (discrete-time) process or random sequence
 - { X_n , n = 1, 2, ...}
- Continuous T continuousparameter (continuous-time) process

- Discrete *E* discrete-state
 processes (also called a chain)
 - $E = \{0, 1, 2, ...\}$
- Continuous *E* continuousstate process
- Complex RP
 - $X(t) = X_1(t) + jX_2(t)$
 - $X_1(t), X_2(t)$ are real random processes

CHARACTERIZATION OF RANDOM PROCESS

- Probabilistic description
 - [Difficult] Requires full knowledge of all distributions (like n-variate RV)
- Expectation-based statistics description
 - [Easier] Lower-order relationships which are common for many problems

PROBABILISTIC DESCRIPTION OF RP I

Consider RP X(t). For fixed time t_1 , $X(t_1) = X_1$ is a RV with CDF

16

•
$$F_X(x_1; t_1) = P(X(t_1) \le x_1)$$

• First-order distribution of X(t)

• Second-order distribution given t_1 and t_2

•
$$F_X(x_1, x_2; t_1, t_2) = P(X(t_1) \le x_1, X(t_2) \le x_2)$$

Can easily generalize to nth-order distribution

PROBABILISTIC DESCRIPTION OF RP II

■ Use of PDF to specify RP

Discrete

•
$$p_X(x_1, \dots, x_n; t_1, \dots, t_n) = P\{X(t_1) = x_1, \dots, X(t_n) = x_n\}$$

Continuous

$$\bullet f_X(x_1, \dots, x_n; t_1, \dots, t_n) = \frac{\partial F_X(x_1, \dots, x_n; t_1, \dots, t_n)}{\partial x_1 \dots \partial x_n}$$

STATISTICS OF RP I

RP often described by statistical averages

- Mean X(t) ensemble average
 - $\mu_X(t) = E[X(t)]$
 - Note μ_X is a function of time and X(t) is a RV for a fixed t
- Autocorrelation describes relationship between two samples (@ 2 times) of X(t)
 - $R_{XX}(t_1, t_2) = E[X(t_1)X(t_2)] = R_{XX}(t_2, t_1)$
- Often expressed in terms of how far apart samples are in time

•
$$R_{XX}(t, t + \tau) = E[X(t)X(t + \tau)] = R_{XX}(\tau)$$

STATISTICS OF RP II

Autocovariance

•
$$C_{XX}(t_1, t_2) = E[(X(t_1) - \mu_X(t_1))(X(t_2) - \mu_X(t_2))]$$

= $R_{XX}(t_1, t_2) - \mu_X(t_1)\mu_X(t_2)$

 \blacksquare Note: both R_{XX} and C_{XX} are deterministic functions of t_1, t_2

•
$$Var(X) = \sigma_X^2(t) = E\left[\left(X(t) - \mu_X(t)\right)^2\right] = C_{XX}(t,t)$$

STATISTICS OF RP III

- Given random signals X(t), Y(t)
- Cross correlation
 - $\blacksquare R_{XY}(t_1, t_2) = E[X(t_1)X(t_2)]$
- Cross covariance

•
$$C_{XY}(t_1, t_2) = E[(X(t_1) - \mu_X(t_1))(Y(t_2) - \mu_Y(t_2))]$$

= $R_{XY}(t_1, t_2) - \mu_X(t_1)\mu_Y(t_2)$

EXAMPLE 5.12

- Consider RP
 - $\bullet X(t) = Y \cos \omega t$
- Where ω is a constant and $Y \sim U[0,1]$
- (a) Find E[X(t)]
- (b) Find autocorrelation $R_{XX}(t,s)$ of X(t)
- (c) Find autocovariance $C_{XX}(t,s)$

CLASSIFICATION OF RP

- Special RP can be specified just by first- and second-order distributions
 - Special probabilistic structure requires less information to specify
- Will consider processes that are:
 - Strict sense stationary
 - Wide sense stationary
 - Independent

(STRICT-SENSE) STATIONARY I

- RP { $X(t), t \in T$ } where for all n and every set of time instants { $t_i \in T, i = 1, 2, ..., n$ }
 - $F_X(x_1, ..., x_n; t_1, ..., t_n) = F_X(x_1, ..., x_n; t_1 + \tau, ..., t_n + \tau)$
- The distribution of a stationary process is unaffected by a shift (τ) in the time origin
 - X(t) and $X(t + \tau)$ will have the same distribution

 \blacksquare Non-stationary processes have distributions that depend on time t_1,\ldots,t_n

(STRICT-SENSE) STATIONARY II

■ 1st-order distribution

•
$$F_X(x;t) = F_X(x;t+\tau) = F_X(x)$$

• $f_X(x;t) = f_X(x)$
• $\Rightarrow \mu_X(t) = E[X(t)] = \mu$ constant

•
$$\Rightarrow Var(X(t)) = \sigma^2$$
 constant

■ 2nd-order distribution

•
$$F_X(x_1, x_2; t_1, t_2) = F_X(x_1, x_2; t_2 - t_1)$$

- $f_X(x_1, x_2; t_1, t_2) = f_X(x_1, x_2; t_2 t_1)$
 - Characterized by time difference

WIDE SENSE STATIONARY

• Process that does not have stationary conditions $\forall n$ but for n = 2 (compare two times rather than all) 25

- $E[X(t)] = \mu$ constant
- $R_X(t,s) = E[X(t)X(s)] = R_X(|s-t|) = R_X(\tau)$

 \blacksquare WSS process only depends on time difference τ

- \blacksquare Note: Avg. power of process is independent of t
 - $\bullet E[X^2(t)] = R_{XX}(0)$
- Similarly, jointly WSS
 - $\blacksquare R_{XY}(t,t+\tau) = E[X(t)Y(t+\tau)] = R_{XY}(\tau)$

INDEPENDENT PROCESSES

Given RP X(t), the RVs for fixed time t_i are independent

$$F_X(x_1, ..., x_n; t_1, ..., t_n) = \prod_{i=1}^n F_X(x_i; t_i)$$

26

• Only first-order distributions are required

EXAMPLE 5.20

- Consider RP
 - $X(t) = A\cos(\omega t + \Theta)$
- Where A, ω is a constant and $\Theta \sim U[-\pi, \pi]$

- $\blacksquare \text{Show } X(t) \text{ is WSS}$
 - Check conditions:
 - 1) $E[X(t)] = \mu$ constant
 - 2) $R_{XX}(t,s) = R_{XX}(\tau)$ only depends on time difference

27