EE361: SIGNALS AND SYSTEMS II

CH6: ANALYSIS AND PROCESSING OF RANDOM PROCESSES

NOTE ON CONTENT

- We will only cover
 - 6.3 Power Spectral Densities
 - 6.4 White Noise
 - 6.5 Response of Linear Systems to Random Inputs

INTRODUCTION

- This chapter finally connects the second half of ee361 (probability, random variables, random processes) to ee360 and first half ee361 (LTI systems)
 - Explain how to analyze an LTI system with stochastic input

STOCHASTIC CORRELATION REMINDER

- Autocorrelation
 - $R_X(\tau) = R_{XX}(\tau) = E[X(t)X(t+\tau)]$
- Properties
 - 1) $R_X(-\tau) = R_X(\tau)$
 - $|R_X(\tau)| \le R_X(0)$
 - \blacksquare 3) $R_X(0) = E[X^2(t)] \ge 0$

- Cross correlation
 - $R_{XY}(\tau) = E[X(t)Y(t+\tau)]$
- Properties
 - 1) $R_{XY}(-\tau) = R_{YX}(\tau)$
 - $|R_{XY}(\tau)| \le \sqrt{R_X(0)R_Y(0)}$
 - $3) |R_{XY}(\tau)| \le \frac{1}{2} [R_X(0) + R_Y(0)]$
- If $R_{XY}(\tau) = 0 \ \forall \tau \Rightarrow$ mutually orthogonal

POWER SPECTRAL DENSITY (POWER SPECTRUM)

- Describes how variance of data is distributed over frequency
 - Indicates which frequency variations are strong (more energy)
- Defines as Fourier Transform of autocorrelation

$$S_X(\omega) = \int_{-\infty}^{\infty} R_X(\tau) e^{-j\omega\tau} d\tau \qquad \leftarrow \text{FT}$$

$$R_X(\tau) = \frac{1}{2\pi} \int_{-\infty}^{\infty} S_X(\omega) e^{j\omega\tau} d\omega \qquad \leftarrow \text{iFT}$$

PROPERTIES OF PSD

$$S_X(\omega) = \int_{-\infty}^{\infty} R_X(\tau) e^{-j\omega\tau} d\tau$$

$$R_X(\tau) = \frac{1}{2\pi} \int_{-\infty}^{\infty} S_X(\omega) e^{j\omega\tau} d\omega$$

- 1) $S_X(\omega) \ge 0$ and real

- For discrete
- 4) $S_X(\Omega + 2\pi) = S_X(\Omega)$ 2π periodic

CROSS PSD (CROSS POWER SPECTRUM)

$$S_{XY}(\omega) = \int_{-\infty}^{\infty} R_{XY}(\tau) e^{-j\omega\tau} d\tau \qquad \leftarrow \Im\{R_{XY}(\tau)\}$$

$$R_{XY}(\tau) = \frac{1}{2\pi} \int_{-\infty}^{\infty} S_{XY}(\omega) e^{j\omega\tau} d\omega \qquad \leftarrow \mathfrak{I}^{-1} \{ S_{XY}(\omega) \}$$

- Properties
 - $\blacksquare 1) S_{XY}(\omega) = S_{YX}(-\omega)$

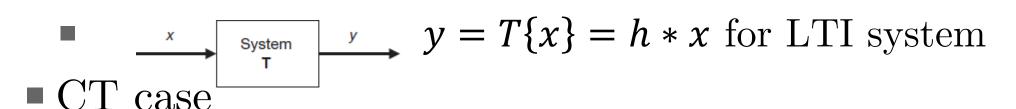
 - Note: $S_{XY}(\omega)$ is complex valued, discrete version is also 2π periodic

WHITE NOISE

- The white noise RP w(t), is a wide-sense stationary (WSS) zero-mean CT random process with:
 - $\blacksquare R_W(\tau) = \sigma^2 \delta(\tau)$
 - $S_W(\omega) = \int_{-\infty}^{\infty} \sigma^2 \delta(\tau) \, e^{-j\omega\tau} d\tau = \sigma^2$
- White noise process has a constant power spectrum
 - All frequencies are equally represented → "white" signal
- Note: the avg. power of w(t) is not finite
 - DT has finite power for w(n) because $S_W(\Omega) = \sigma^2$ is over a 2π interval (period)

LTI RESPONSE TO RANDOM INPUTS

Remember



$$y(t) = \int_{-\infty}^{\infty} h(\tau)x(t-\tau)d\tau$$

- DT case
- Note: we are using here notation from Oppenheim and Schafer

CT LTI SYSTEM WITH RANDOM INPUTS I

- When input is RP $\{X(t), t \in T_X\}$, then output is also a RP $\{Y(t), t \in T_Y\}$
 - $Y(t), t \in T_Y \} = T\{X(t), t \in T_X \}$
 - Poor notation: system T operating on RP X(t)
- For a realization (specific input signal)
 - $y_i(t) = T\{x_i(t)\}$
 - Our traditional study from ee360 and first half of ee361

CT LTI SYSTEM WITH RANDOM INPUTS II

- Given LTI system with random input (can't specifically give output $Y(t) = \int_{-\infty}^{\infty} h(\tau)X(t-\tau)d\tau$)
- Specify stochastically
 - $E[Y(t)] = \int_{-\infty}^{\infty} h(\tau) E[X(t-\tau)] d\tau$
 - $R_Y(t,s) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(\alpha)h(\beta)R_X(t-\alpha,s-\beta)d\alpha d\beta$

CT LTI SYSTEM WITH RANDOM INPUTS III

- \blacksquare For WSS X(t)
 - $E[Y(t)] = \int_{-\infty}^{\infty} h(\tau) E[X(t-\tau)] d\tau$ $= \mu_X \int_{-\infty}^{\infty} h(\tau) d\tau = \mu_X H(j\omega)|_{\omega=0}$
 - Since $E[X(t-\tau)]$ is a constant and $H(j\omega) = \Im\{h(t)\}$
 - $R_Y(t,t+\tau) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(\alpha)h(\beta)R_X(\tau+\alpha-\beta)d\alpha d\beta = R_Y(\tau)$
- $\blacksquare Y(t)$ is WSS since:
 - 1) $E[Y(t)] = \mu_X H(0)$ \leftarrow constant
 - $\blacksquare 2) R_Y(t, t + \tau) = R_Y(t, s) = R_Y(\tau)$

WSS LTI PSD

- $S_Y(\omega) = \int_{-\infty}^{\infty} R_Y(\tau) e^{-j\omega\tau} d\tau = |H(\omega)|^2 S_X(\omega)$
 - $\blacksquare S_Y(\omega)$ output psd
 - $|H(\omega)|^2$ magnitude squared of frequency response
 - $\blacksquare S_X(\omega)$ input psd
- $R_Y(\tau) = \frac{1}{2\pi} \int_{-\infty}^{\infty} S_Y(\omega) e^{j\omega\tau} d\omega = \frac{1}{2\pi} \int_{-\infty}^{\infty} |H(\omega)|^2 S_X(\omega) e^{j\omega\tau} d\omega$
- Average power
 - $E[Y^{2}(t)] = R_{Y}(0) = \frac{1}{2\pi} \int_{-\infty}^{\infty} |H(\omega)|^{2} S_{X}(\omega) d\omega$

DT LTI RESPONSE

- Very similar results to CT case
 - $Y(n) = \sum_{i=-\infty}^{\infty} h(i)X(n-i)$
 - $R_Y(n,m) = \sum_i \sum_l h(i)h(l)R_X(n-i,m-l)$
- For WSS X(n)
 - $\blacksquare E[Y(n)] = \mu_X H(0)$
 - $\blacksquare R_Y(n,m) = R_Y(n,n+k) = R_Y(k)$
 - $S_Y(\Omega) = |H(\Omega)|^2 S_X(\Omega)$

RECAP

- Since random input gives random output, analyze LTI system stochastically
 - Power spectrum is FT of (auto)correlation
- Will focus on WSS processes
 - 1st-order specification
 - Expected output: $E[Y(t)] = \mu_X H(j\omega)|_{\omega=0}$
 - 2nd-order specification
 - Autocorrelation: $R_Y(\tau) = \mathfrak{I}^{-1}\{S_Y(\omega)\} = \mathfrak{I}^{-1}\{|H(j\omega)|^2S_X(\omega)\}$

EXAMPLE 6.26

- $\blacksquare X(t)$ WSS and $R_X(\tau) = e^{-a|\tau|}$ for input
- $\bullet h(t) = e^{-bt}u(t)$
- Find autocorrelation of output Y(t)

Will do in discussion