EE361: SIGNALS AND SYSTEMS II CH2: RANDOM VARIABLES

http://www.ee.unlv.edu/~b1morris/ee361

RANDOM VARIABLES

CHAPTER 2.1-2.2

INTRODUCTION

 A Random Variable is a function that maps outcomes to values and allows for assignment of a probability (real value) to an event

- Will use distribution functions to describe the functional mapping
 - Example: your score on the midterm is a random variable and the Gaussian distribution explains the probability you achieved a certain value (e.g. 70/100)

RANDOM VARIABLE

- $X(\xi)$ is a single-valued real function that assigns a real number (value) to each sample point (outcome) in a sample space S
 - Often just use X for simplicity
 - This is a function (mapping) from sample space S (domain of X) to values (range)
 - This is a many-to-one mapping
 - Different ξ_i may have same value $X(\xi_i)$, but two values cannot come from same outcome

EVENTS DEFINED BY RVS

Event

•
$$(X = x) = \{\xi : X(\xi) = x\}$$

RV X value is x, a fixed real number

Similarly,

•
$$(x_1 < X \le x_2) = \{\xi : x_1 < X(\xi) \le x_2\}$$

Probability of event

•
$$P(X = x) = P\{\xi : X(\xi) = x\}$$

EXAMPLE: COIN TOSS 3 TIMES

- Sample space $S = \{HHH, HHT, \dots, TTT\}, |S| = 2^3 = 8$
- \blacksquare Define RV X as the number of heads after the three tosses
- Find P(X = 2)
 - Event A: $(X = 2) = \{\xi : X(\xi) = 2\} = \{HHT, HTH, THH\}$
 - By equally likely events

•
$$P(A) = P(X = 2) = \frac{|A|}{|S|} = \frac{3}{8}$$

- Find P(X < 2)
 - Event B: $(X < 2) = \{\xi : X(\xi) < 2\} = \{HTT, THT, HTT, TTT\} (1 or less heads)$
 - By equally likely events

•
$$P(B) = P(X < 2) = \frac{|B|}{|S|} = \frac{4}{8} = \frac{1}{2}$$

DISTRIBUTION FUNCTIONS

CHAPTER 2.3

CUMULATIVE DISTRIBUTION FUNCTION (CDF)

$$\bullet F_X(x) = P(X \le x) \qquad -\infty < x < \infty$$

- $\blacksquare F$ the CDF
- $\blacksquare X$ the RV of interest
- x the value the RV will take

• Note: this is an increasing (non-decreasing) function

CDF PROPERTIES

- 1) $0 \leq F_X(x) \leq 1$
 - Must be less than some maximal value
- 2) $F_X(x_1) \le F_X(x_2)$ if $x_1 < x_2$
 - Non-decreasing function

• 5)
$$\lim_{\substack{x \to a^+ \\ \text{with } a^+ = \lim_{0 < \epsilon \to 0} a + \epsilon}} F_X(x) = F_X(a^+) = F_X(x)$$

Continuous from the right

$\blacksquare X$ – number of heads in three tosses

x (value)	Event $(X \leq x)$	# elements	$F_X(x)$
-1	Ø	0	0
0	$\{TTT\}$	$1 \; (1 + 0)$	$\frac{1}{8}$
1			
2			
3			
4			

$\blacksquare X$ – number of heads in three tosses

x (value)	Event $(X \leq x)$	# elements	$F_X(x)$
-1	Ø	0	0
0	$\{TTT\}$	1 (1 + 0)	$\frac{1}{8}$
1	$\{HTT, THT, TTH, TTT\}$	4 (3+ 1)	$\frac{4}{8} = \frac{1}{2}$
2			
3			
4			

$\blacksquare X$ – number of heads in three tosses

x (value)	Event $(X \leq x)$	# elements	$F_X(x)$
-1	Ø	0	0
0	$\{TTT\}$	$1 \; (1 + 0)$	$\frac{1}{8}$
1	$\{HTT, THT, TTH, TTT\}$	4 (3+1)	$\frac{4}{8} = \frac{1}{2}$
2	{HHT, HTH, THH, \mathbf{HTT} , \mathbf{THT} , \mathbf{TTH} , \mathbf{TTT} }	7~(3+4)	$\frac{7}{8}$
3			
4			

$\blacksquare X$ – number of heads in three tosses

x (value)	Event $(X \leq x)$	# elements	$F_X(x)$
-1	Ø	0	0
0	$\{TTT\}$	$1 \; (1 + 0)$	$\frac{1}{8}$
1	$\{HTT, THT, TTH, TTT\}$	4(3+1)	$\frac{4}{8} = \frac{1}{2}$
2	{HHT, HTH, THH, HTT, THT, TTH, TTT}	7 (3 + 4)	$\frac{7}{8}$
3	{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT}	$8 \; (1 + 7)$	1
4	S	$8 \; (0 + 8)$	1

$\blacksquare X$ – number of heads in three tosses

x (value)	Event $(X \leq x)$	# elements	$F_X(x)$
-1	Ø	0	0
0	$\{TTT\}$	$1 \; (1 + 0)$	$\frac{1}{8}$
1	$\{HTT, THT, TTH, TTT\}$	4(3+1)	$\frac{4}{8} = \frac{1}{2}$
2	{HHT, HTH, THH, HTT, THT, TTH, TTT}	$7 \; (3 + 4)$	$\frac{7}{8}$
3	$\{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT\}$	$8 \; (1 + 7)$	1
4	S	$8 \; (0 + 8)$	1

PROBABILITIES FROM CDF

Completely specify probabilities from a CDF

■ 1)
$$P(a < X \le b) = F_X(b) - F_X(a)$$

= $P(X \le b) - P(X \le a)$

2)
$$P(X > a) = 1 - F_X(a)$$

$$\bullet 3) P(X < b) = F_X(b^-)$$

•
$$b^- = \lim_{0 < \epsilon \to 0} b - \epsilon$$

• Approach from the left side

DISCRETE RVS AND PROBABILITY MASS FUNCTIONS

CHAPTER 2.4

DISCRETE RV

• X is RV with CDF $F_X(x)$ and $F_X(x)$ only changes in jumps (countably many) and is constant between jumps

17

Range of X contains a finite (countably infinite) number of points

PROBABILITY MASS FUNCTION (PMF)

 \blacksquare Given jumps in discrete RV @ points x_1, x_2, \ldots and $x_i < x_j$ for i < j

18

•
$$p_X(x_i) = F_X(x_i) - F_X(x_{i-1})$$

= $P(X \le x_i) - P(X \le x_{i-1}) = P(X = x_i)$

■ 3 Coin toss example

\boldsymbol{x} (value)	# elements	$F_X(x)$	$p_X(x)$	Discussion
1	4(3+1)	$\frac{4}{8} = \frac{1}{2}$	$p_X(1) = \frac{4}{8} - \frac{1}{8} = \frac{3}{8}$	<how much more needed from previous value $>$
2	$7 \; (3 + 4)$	$\frac{7}{8}$	$p_X(2) = \frac{7}{8} - \frac{1}{2} = \frac{3}{8}$	3 extra outcomes
3	$8 \; (1 + 7)$	1	$p_X(3) = 1 - \frac{7}{8} = \frac{1}{8}$	1 extra outcome

PMF PROPERTIES

19

• CDF from PMF

•
$$F_X(x) = P(X \le x) = \sum_{x_k \le x} p_X(x_k)$$

Accumulation of probability mass

CONTINUOUS RVS AND PROBABILITY DENSITY FUNCTIONS

CHAPTER 2.5

CONTINUOUS RV

• X is RV with CDF $F_X(x)$ continuous and derivative $\frac{dF_X(x)}{dx}$ exists

Range contains an interval of real numbers

• Note: P(X = x) = 0

There is zero probability for a particular continuous outcome → only over a range of values

PROBABILITY DENSITY FUNCTION (PDF)

•
$$f_X(x) = \frac{dF_X(x)}{dx}$$

pdf of
$$X$$

• 4)
$$P(a < X \le b) = \int_a^b f_X(x) dx$$

= $P(a \le X \le b)$
= $F_X(b) - F_X(a)$

- Properties
- $\bullet 1) f_X(x) \ge 0$

$$\bullet 2) \int_{-\infty}^{\infty} f_X(x) dx = 1$$

- 3) $f_X(x)$ is piecewise continuous
- CDF from PDF

•
$$F_X(x) = P(X \le x) = \int_{-\infty}^{x} f_X(\xi) d\xi$$

MEAN AND VARIANCE

CHAPTER 2.6

MEAN

- \blacksquare Expected value of RV X
- Discrete

$$\bullet \mu_X = E[X] = \sum_k x_k p_X(x_k)$$

Continuous

•
$$\mu_X = E[X] = \int_{-\infty}^{\infty} x f_X(x) dx$$

MOMENT

- \blacksquare nth moment defined as:
- Discrete
 - $E[X^n] = \sum_k x_k^n p_X(x_k)$
- Continuous

•
$$E[X^n] = \int_{-\infty}^{\infty} x^n f_X(x) dx$$

VARIANCE

•
$$\sigma_X^2 = Var(X) = E[(X - E[X])^2] \quad Var(X) = E[(X - E[X])^2]$$

- E[.] expected value operation
- $E[X] = \mu_X$ mean
- Discrete

•
$$\sigma_X^2 = \sum_k (x - \mu_X)^2 p_X(x_k)$$

Continuous

•
$$\sigma_X^2 = \int_{-\infty}^{\infty} (x - \mu_X)^2 f_X(x) dx$$

$$E(X) = E\left[(X - E[X])^2\right]$$

= $E[X^2 - 2X\mu_X + \mu_X^2]$
= $E[X^2] - 2\mu_X E[X] + \mu_X^2$
= $E[X^2] - 2\mu_X^2 + \mu_X^2$
= $E[X^2] - 2\mu_X^2 + \mu_X^2$
= $E[X^2] - \mu_X^2$

SOME SPECIAL DISTRIBUTIONS

CHAPTER 2.7

IMPORTANT DISTRIBUTIONS

- Model real-world phenomena
- Mathematically convenient specification for a probability distribution (usually pmf or pdf)

- Will examine similar discrete and continuous distributions
 - See book for technical details (e.g. mean/var)

BIG IDEA: PROBABILITY DISTRIBUTION

- Assign a probability to each of the possible outcomes of a random experiment
- Discrete
 - Probability mass function (pmf) probability of each possible outcome
 - E.g. probability a roll of die will come up with a 3
- Continuous
 - Probability density function (pdf) probability the outcome is within a range of values (interval)
 - E.g. probability that a 500 g package is between 490-510 g

SPECIAL DISTRIBUTIONS

- Discrete
 - Bernoulli
 - Binomial
 - Geometric
 - Negative Binomial
 - Poisson
 - Uniform

- Continuous
 - Uniform
 - Exponential
 - Gamma
 - Normal

BERNOULLI DISTRIBUTION

- Binary RV with probability p of 1 ("success") or (1-p) for failure
 - E.g. a coin flip with heads a "success" or "1" and tails a "failure" or "0"

•
$$p_X(k) = P(X = k) = p^k (1 - p)^{1-k}$$

- 0 is probability of success
- (1-p) is probability of failure

■ *k* = 0,1

BINOMIAL DISTRIBUTION

 RV to count the number of successes with n independent Bernoulli trials

•
$$p_X(k) = P(X = k) = \binom{n}{k} p^k (1-p)^{n-k}$$

- $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ *n* choose *k*
- Number of ways to get k successes (heads) in n trials (coin tosses)

GEOMETRIC DISTRIBUTION

Sequence of Bernoulli trials observed until first success

$$p_X(x) = P(X = x) = (1 - p)^{x - 1} p$$

NEGATIVE BINOMIAL DISTRIBUTION

Number of trials until kth success in sequence of Bernoulli trials

•
$$p_X(x) = P(X = x) = {\binom{x-1}{k-1}} p^k (1-p)^{x-k}$$

0.10
0.08
0.06
0.04
0.02
0 5 10 15 20 25 k
pmf

POISSON DISTRIBUTION

The number of events occurring in a fixed interval (time or space) given a known event average rate λ

DISCRETE UNIFORM DISTRIBUTION

Equally likely outcomes

$$\bullet p_X(x) = P(X = x) = \frac{1}{n}$$

CONTINUOUS UNIFORM DISTRIBUTION

 Often used when no prior knowledge and equally likely values in a range

EXPONENTIAL DISTRIBUTION

Time decay – memoryless property

$$\bullet f_X(x) = \lambda e^{-\lambda x} \quad x > 0$$

GAMMA DISTRIBUTION

NORMAL (GAUSSIAN) DISTRIBUTION

• Models many natural phenomena

•
$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x-\mu)^2/2\sigma^2}$$

Shorthand notation $X \sim N(\mu, \sigma^2)$

CONDITIONAL DISTRIBUTIONS

CHAPTER 2.8

CONDITIONAL DISTRIBUTIONS

• Remember $P(A|B) = \frac{P(A \cap B)}{P(B)}, P(B) > 0$

Conditional CDF

•
$$F_X(x|B) = P(X \le x|B) = \frac{P\{(X \le x) \cap B\}}{P(B)}$$

Conditional PMF

•
$$p_X(x_k|B) = P(X = x_k|B) = \frac{P\{(X = x_k) \cap B\}}{P(B)}$$

Conditional PDF

•
$$f_X(x|B) = \frac{d}{dx}F_X(x|B)$$