Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu

EE361: Signals and System II

Spring 2015 TTh 13:00-14:15 BEH 221

Probability Distributions 15/03/19

http://www.ee.unlv.edu/~b1morris/ee361/

Big Idea: Probability Distribution

- Assign a probability to each of the possible outcomes of a random experiment
- Discrete
 - Probability mass function (pmf) probability of each possible outcome
 - E.g. probability a roll of die will come up with a 3
- Continuous
 - Probability density function (pdf) probability the outcome is within a range of values (interval)
 - E.g. probability that a 500 g package is between 490-510 g

Special Distributions

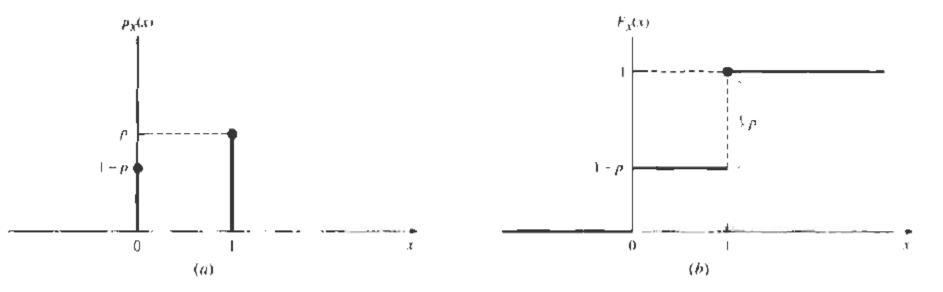
- Discrete
 - Bernoulli
 - Binomial
 - Geometric
 - Negative Binomial
 - Poisson
 - Uniform

- Continuous
 - Uniform
 - Exponential
 - Gamma
 - Normal

Bernoulli Distribution

• Binary RV with probability *p* of 1 ("success")

•
$$p_X(k) = P(X = k) = p^k (1 - p)^{1-k}$$

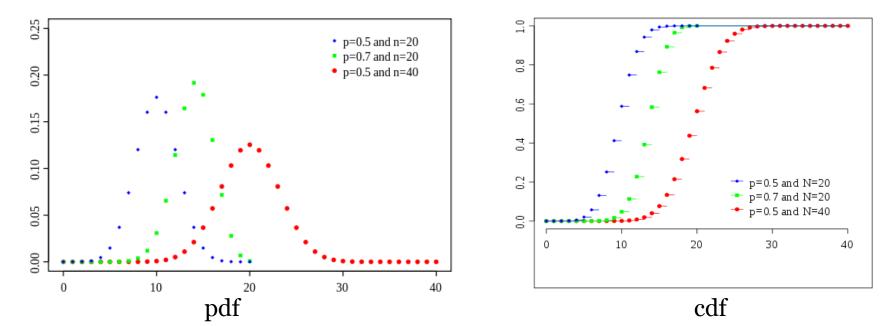


Binomial Distribution

• RV to count the number of successes with *n* independent Bernoulli trials

•
$$p_X(k) = P(X = k) = \binom{n}{k} p^k (1-p)^{n-k}$$

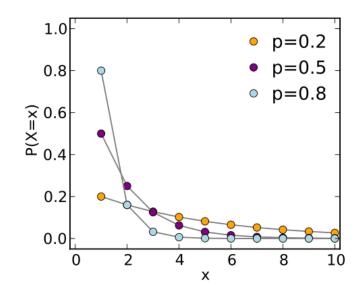
• $\binom{n}{k}$ - *n* choose *k* ways to get *k* successes

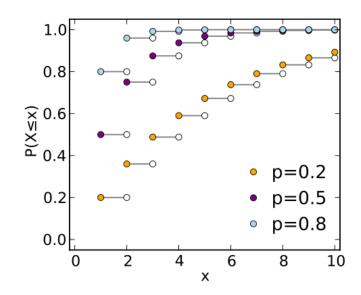


Geometric Distribution

Sequence of Bernoulli trials observed until first success

•
$$p_X(x) = P(X = x) = (1 - p)^{x - 1}p$$





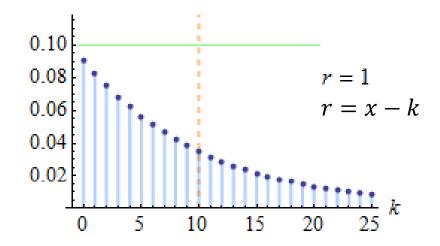
pdf

cdf

Negative Binomial Distribution

 Number of trials until kth success in sequence of Bernoulli trials

•
$$p_X(x) = P(X = x) = {\binom{x-1}{k-1}} p^k (1-p)^{x-k}$$

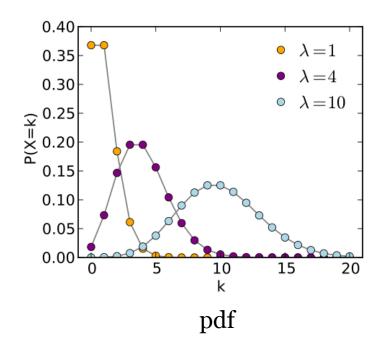


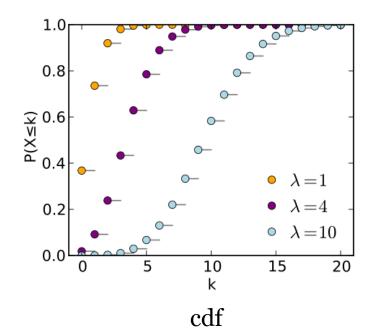
Poisson Distribution

 The number of events occurring in a fixed interval (time or space) given a known event average rate λ

1.

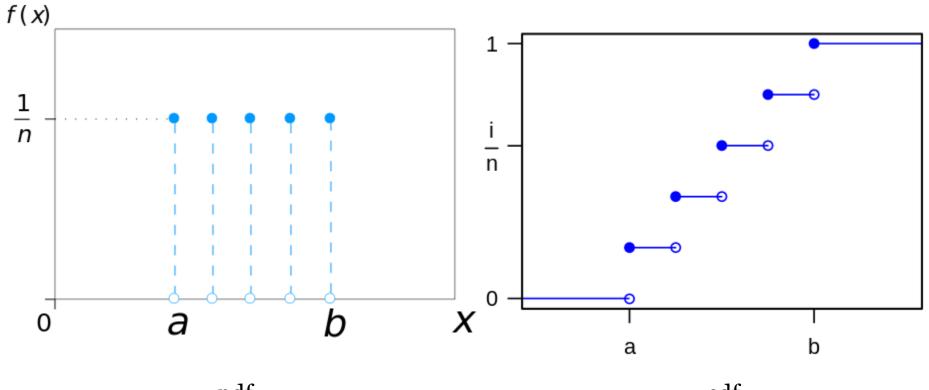
•
$$p_X(k) = P(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}$$





Discrete Uniform Distribution

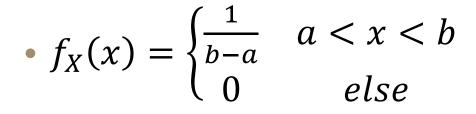
•
$$p_X(x) = P(X = x) = \frac{1}{n}$$

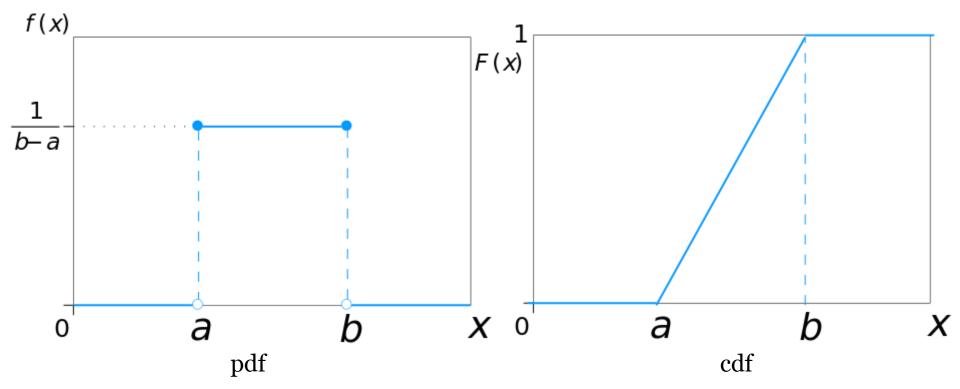


pdf

 cdf

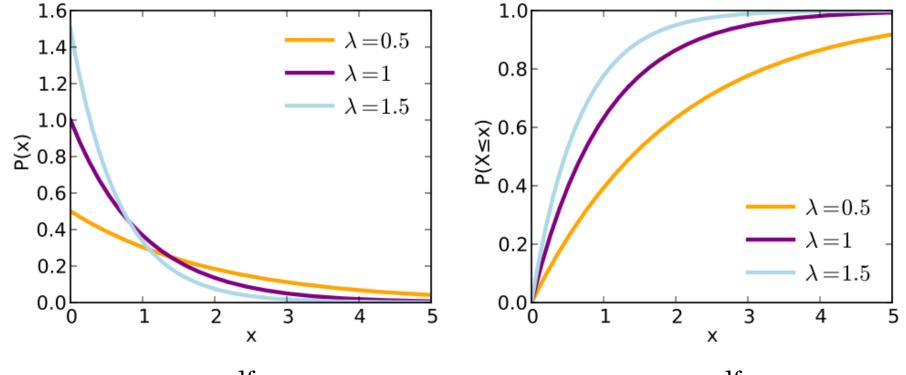
Continuous Uniform Distribution





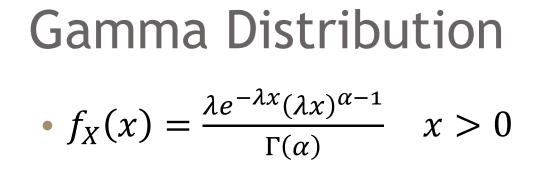
Exponential Distribution

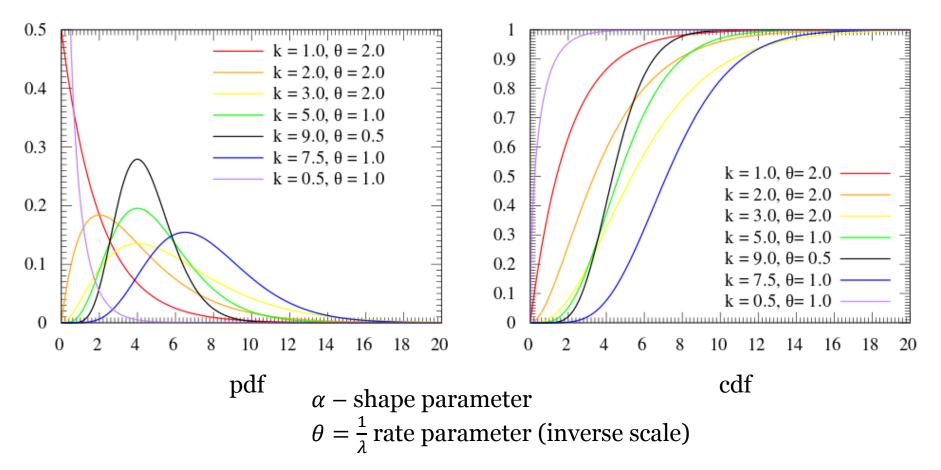
•
$$f_X(x) = \lambda e^{-\lambda x}$$
 $x > 0$



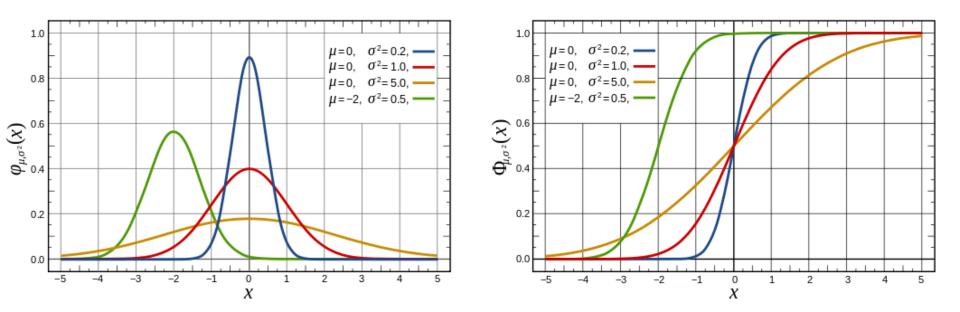
pdf

cdf





Normal (Gaussian) Distribution • $f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x-\mu)^2/2\sigma^2}$



pdf

cdf