EE482: Digital Signal Processing Applications

DSP Fundamentals

http://www.ee.unlv.edu/~b1morris/ee482/
Outline

- Elementary Signals
- System Concepts
- Z-Transform
- Frequency Response
Elementary Digital Signals

- Digital signal
 - $x(n)$ $n \in \mathbb{Z}$
 - Deterministic – expressed mathematically (e.g. sinusoid)
 - Random – cannot be described exactly by equations (e.g. noise, speech)

- Unit impulse (Kronecker delta)
 - $\delta(n) = \begin{cases}
 1, & n = 0 \\
 0, & n \neq 0
\end{cases}$
 - Basic building block of all digital signals

- Unit step
 - $u(n) = \begin{cases}
 1, & n \geq 0 \\
 0, & n < 0 = \sum_{k=-\infty}^{n} \delta(k)
\end{cases}$
Sinusoidal Signals

- Continuous
 \[x(t) = A \sin(\Omega t + \phi) = A \sin(2\pi f t + \phi) \]

- Sampled
 \[x(n) = A \sin(\Omega nT + \phi) = A \sin(2\pi f nT + \phi) \]
 \[\Omega = 2\pi f \]
 \[x(n) = A \sin(\omega n + \phi) = A \sin(F\pi n + \phi) \]
 \[\omega = \Omega T \]
Relationships Between Frequency Variables

Table 2.1

<table>
<thead>
<tr>
<th>Variable</th>
<th>Units</th>
<th>Relationships</th>
<th>Ranges</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ω</td>
<td>rads/sec</td>
<td>Ω = 2πf</td>
<td>−∞ < Ω < ∞</td>
</tr>
<tr>
<td>f</td>
<td>cycles/sec (Hz)</td>
<td>f = Ω / 2π = ωfₛ / 2 π</td>
<td>−∞ < f < ∞</td>
</tr>
<tr>
<td>ω</td>
<td>rads/sample</td>
<td>ω = ΩT = 2πf / fₛ</td>
<td>−π ≤ ω ≤ π</td>
</tr>
<tr>
<td>F</td>
<td>cycles/sample</td>
<td>F = f / fₛ / 2 = ω / 2</td>
<td>−1 ≤ F ≤ 1</td>
</tr>
</tbody>
</table>

- Normalized frequency measures
 - Note: max frequency for π or definition over a 2π interval
 - Consider $e^{j(\omega + 2\pi k)}$
Example 2.1

- \(A=2; \)
- \(f=1000; \)
- \(\text{fs} = 8000; \)
- \(n=0:31; \)
- \(w = 2\pi f/\text{fs}; \)
- \(x = A\sin(wn); \)

\[
h=\text{figure};
\%
\text{plot sampled sine}
\text{subplot}(2,1,1)
\text{plot}(n,x,'-o','linewidth',2);
xlabel('time index [n]')
ylabel('value')
\%
\text{plot analog sine}
\text{subplot}(2,1,2)
t=0:1e-5:4e-3;
\text{plot}(t,A\sin(2\pi ft),'-o','linewidth',2);
\text{hold all;}
\text{plot}(n*(1/\text{fs}),x,'-o','linewidth',2);
xlabel('time [t=n(1/f_s)]')
ylabel('value')
Block Diagram Representation

- Processing accomplished with 3 basic operations
- Addition
 - $y(n) = x_1(n) + x_2(n)$
- Multiplication
 - $y(n) = ax(n)$
- Time shift (delay)
 - $y(n) = x(n - L)$
 - Multiple delays can be implemented with a shift register (first-in, first-out buffer)(tapped delay line)

Multiplication in z domain
System Concepts

- Generic system

\[x(n) \xrightarrow{T} y(n) \]

- Linearity
 - Additive and homogeneity (scaling) properties
 - \[T\{ax_1(n) + bx_2(n)\} = ay_1(n) + by_2(n) \]

- Time invariance
 - Shift in input causes corresponding shift in output
 - \[y(n - n_0) = T\{x(n - n_0)\} \]
 - To test
 - Find \(y_1(n) = y(n - n_0) \) replace \(n \) by \(n_0 \)
 - Find \(y_2(n) = T\{x(n - n_0)\} \) response of system to shifted input
LTI Systems

- Impulse response

\[x(n) = \delta(n) \quad \rightarrow \quad LTI \quad \rightarrow \quad y(n) = h(n) \]

- Output of LTI system \(y(n) = h(n) \) to input \(x(n) = \delta(n) \)

- Convolution
 - Input-output relationship of LTI system

\[y(n) = x(n) * h(n) = \sum_{k=-\infty}^{\infty} x(k)h(n - k) = \sum_{k=-\infty}^{\infty} h(k)x(n - k) \]
General Difference Equation Systems

\[y(n) = \sum_{k=0}^{L-1} b_k x(n - k) - \sum_{k=0}^{M} a_k y(n - k) \]

- Infinite impulse response (IIR)
 - \(h(n) \) non-zero as \(n \to \infty \)
- Finite impulse response (FIR)
 - \(h(n) \) defined over finite set of \(n \)
 - Special case of above with \(a_k = 0 \)
 - This system only has zeroes and poles at \(z = 0 \)

- Causality
 - Output only depends on previous input
 - \(h(n) = 0, \quad n < 0 \)
Z-Transform

- Very useful computational tool for studying digital systems
- Definition

\[X(z) = \sum_{n=-\infty}^{\infty} x(n)z^{-n} \]

- Has associated region of convergence (ROC)
 - Values of \(z \) where summation converges
- Useful summation formulas

\[\sum_{k=0}^{N} \alpha^n = \frac{1 - \alpha^{N+1}}{1 - \alpha} \]
\[\sum_{k=0}^{\infty} \alpha^n = \frac{1}{1 - \alpha} \quad |\alpha| < 1 \]
Z-Transform Properties

- **Linearity**
 - \(\mathcal{Z}\{ax_1(n) + bx_2(n)\} = aX_1(z) + bX_2(z) \)

- **Time shift**
 - \(\mathcal{Z}\{x(n - k)\} = z^{-k}X(z) \)

- **Convolution**
 - \(x(n) = x_1(n) * x_2(n) \rightarrow X(z) = X_1(z)X_2(z) \)
 - **ROC** = \(R_{x1} \cap R_{x2} \)
Transfer Functions

\[Y(z) = X(z)H(z) \]

\[H(z) = \frac{Y(z)}{X(z)} \]

- General polynomial form from difference equation

\[
H(z) = \frac{\sum_{k=0}^{L-1} b_k z^{-k}}{1 + \sum_{k=1}^{M} a_k z^{-k}}
\]
Poles and Zeros

\[H(z) = b_0 \frac{\prod_{k=1}^{L-1} (z - z_k)}{\prod_{k=1}^{M} (z - p_k)} = b_0 \frac{(z - z_1)(z - z_2) \ldots}{(z - p_1)(z - p_2) \ldots} \]

- **Zeros**
 - Roots of the numerator polynomial
 - Locations in z-plane that make output zero
- **Poles**
 - Roots of the denominator polynomial
 - Locations in z-plane that make output infinity (unstable)
 - System is considered unstable if the ROC doesn’t contain the unit circle (no DTFT exists)
 - Causal system → poles should be inside unit circle
Example 2.10

• \(H(z) = \frac{1}{L} \left[\frac{1-z^{-L}}{1-z^{-1}} \right] \)
 ▫ Notice this is a polynomial in \(z^{-1} \)

• Convert to polynomial in \(z \) to get all poles and zeros

• \(H(z) = \frac{1}{L} \left[\frac{z^{L-1}}{z^{L-z-L-1}} \right] = \frac{1}{L} \left[\frac{z^{L-1}}{z^{L-1}(z-1)} \right] \)
 ▫ Poles
 • \((z - 1) = 0 \rightarrow z = 1\)
 • \(z^{L-1} = 0 \rightarrow \text{L-1 poles at } z = 0\)
 ▫ Zeros
 • \(z^L - 1 = 0 \rightarrow z_l = e^{j \frac{2\pi}{L} l}\)
 • \(L\) zeros even spaced around unit circle

• Matlab
 • \texttt{fvtool([1 0 0 0 0 0 0 0 1], [1 -1]);}

![Figure 2.12 Pole-zero diagram of the moving-averaging filter, \(L = 8 \)](image)
Frequency Response

• Discrete-time Fourier transform (DTFT)

\[H(\omega) = H(z)|_{z=e^{j\omega}} = \sum_{n=-\infty}^{\infty} h(n)e^{-j\omega n} \]

- Evaluate transfer function along the unit circle \(|z| = |e^{j\omega}|\)

\[H(\omega) = |H(\omega)|e^{\angle H(\omega)} \]

\[|H(\omega)| = \sqrt{H(\omega)H^*(\omega)} \quad \angle H(\omega) = \arctan\left(\frac{\text{Im} H(\omega)}{\text{Re} H(\omega)} \right) \]

• Frequency response is periodic on \(2\pi\) interval and symmetric
 - Only \([0, \pi]\) interval is required for evaluation
Graphical DTFT Interpretation

- **Poles**
 - $|H(\omega)|$ gets larger closer to θ

- **Zeros**
 - $|H(\omega)|$ gets smaller closer to θ

- What does a highpass filter look like?

- What does a lowpass filter look like?
Discrete Fourier Transform

• Notice the DTFT is a continuous function of ω
 ▫ Requires an infinite number of samples to compute (infinite sum)

• DFT is a sampled version of the DTFT
 ▫ Samples are taken at N equally spaced frequencies along unit circle
 • $\omega_k = \frac{2\pi k}{N}, k = 0,1, \ldots, N-1$

$$X(k) = X(\omega)\big|_{\omega=\frac{2\pi k}{N}} = \sum_{n=0}^{N-1} x(n)e^{-j\frac{2\pi k}{N}n}$$

▫ n – time index
▫ k – frequency index
DFT

\[X(k) = X(\omega) \bigg|_{\omega = \frac{2\pi k}{N}} = \sum_{n=0}^{N-1} x(n)e^{-j\frac{2\pi k}{N}n} \]

- DFT can be computed very efficiently with the fast Fourier transform (FFT)
- Frequency resolution of DFT
 - \(\Delta \omega = \frac{2\pi}{N}, \quad \Delta f = \frac{f_s}{N} \)
- Analog frequency mapping
 - \(f_k = k\Delta f = \frac{kf_s}{N}, \quad k = 0, 1, ..., N - 1 \)
 - Nyquist frequency \(\frac{f_s}{2} \) corresponds to \(k = \frac{N}{2} \)
Example 2.16

- \(N = 100; \)
- \(A = 1; \)
- \(f=1000; \)
- \(fs = 10000; \)
- \(n=0:N-1; \)
- \(w = 2\pi f/fs; \)
- \(x = \sin(w*n); \)
- \(X = \text{fft}(x); \)
- \(K = \text{length}(X); \)

- \(h=\text{figure}; \)
- \(\text{subplot}(2,1,1) \)
- \(\text{plot}(0:K-1, 20*\log10(\text{abs}(X)), \quad \text{’linewidth’, 2}); \)
- \(\text{xlabel(’freq index [k]’);} \)
- \(\text{ylabel(’magnitude [dB]’);} \)
- \(\text{subplot}(2,1,2) \)
- \(\%\text{convert index to freq} \)
- \(f = (0:K-1) * fs/N; \)
- \(\text{plot}(f, 20*\log10(\text{abs}(X)), \quad \text{’linewidth’, 2}); \)
- \(\text{xlabel(’freq [Hz]’);} \)
- \(\text{ylabel(’magnitude [dB]’);} \)