EE482: Digital Signal Processing Applications

Spring 2014
TTh 14:30-15:45 CBC C222

Lecture 06
IIR Design 2
14/03/06

http://www.ee.unlv.edu/~b1morris/ee482/
Outline

- Review IIR Design
- Implementation Considerations
- Stability
- Coefficient Quantization
- Roundoff Effects
- Cascade Pairing and Ordering
IIR Design

- Reuse well studied analog filter design techniques (books and tables for design)
- Need to map between analog design and a digital design
 - Mapping between s-plane and z-plane
IIR Filter Design

- IIR transfer function

\[
H(z) = \frac{\sum_{l=0}^{L-1} b_l z^{-l}}{1 + \sum_{l=0}^{M} a_l z^{-l}}
\]

- Need to find coefficients \(a_l, b_l\)
 - Impulse invariance – sample impulse response
 - Have to deal with aliasing
 - Bilinear transform
 - Match magnitude response
 - “Warp” frequencies to prevent aliasing
Bilinear Transform Design

- Convert digital filter into an “equivalent” analog filter
 - Use bilinear “warping”
- Design analog filter using IIR design techniques
- Map analog filter into digital
 - Use bilinear transform

Figure 4.5 Digital IIR filter design using the bilinear transform
Bilinear Design Steps

1. Convert digital filter into an “equivalent” analog filter
 ▫ Pre-warp using
 \[\Omega = \frac{2}{T} \tan \left(\frac{\omega}{2} \right) \]

2. Design analog filter using IIR design techniques
 ▫ Butterworth, Chebyshev, Elliptical

3. Map analog filter into digital
 ▫ \[H(z) = H(s) \bigg|_{s=\frac{2}{T} \left(\frac{1-z^{-1}}{1+z^{-1}} \right)} \]
Direct Form I

- **Straight-forward implementation of diff. eq.**
 - \(b_l \) - feed forward coefficients
 - From \(x(n) \) terms
 - \(a_l \) - feedback coefficients
 - From \(y(n) \) terms

- Requires \((L + M)\) coefficients and delays

\[x[n] \rightarrow z^{-1} \rightarrow b_0 \rightarrow v[n] \rightarrow b_1 \rightarrow b_2 \rightarrow \ldots \rightarrow b_N \rightarrow z^{-1} \rightarrow y[n] \]

\[x[n-1] \rightarrow z^{-1} \rightarrow b_1 \rightarrow \ldots \rightarrow b_N \rightarrow z^{-1} \rightarrow y[n-1] \]

\[x[n-2] \rightarrow z^{-1} \rightarrow b_2 \rightarrow \ldots \rightarrow b_N \rightarrow z^{-1} \rightarrow y[n-2] \]

\[x[n-N+1] \rightarrow z^{-1} \rightarrow b_{N-1} \rightarrow \ldots \rightarrow b_N \rightarrow z^{-1} \rightarrow y[n-N+1] \]

\[x[n-N] \rightarrow b_N \rightarrow \ldots \rightarrow b_N \rightarrow z^{-1} \rightarrow y[n-N] \]
Direct Form II

- Notice that we can decompose the transfer function
 - \(H(z) = H_1(z)H_2(z) \)
 - Section to implement zeros
 - Section to implement poles

- Can switch order of operations
 - \(H(z) = H_2(z)H_1(p) \)
 - This allows sharing of delays and saving in memory

Figure 4.7 Direct-form I realization of second-order IIR filter
Cascade (Factored) Form

- Factor transfer function and decompose into smaller sub-systems
 - \(H(z) = H_1(z)H_2(z) \ldots H_K(z) \)

- Make each subsystem second order
 - Complex conjugate roots have real coefficients
 - Limit the order of subsystem (numerical effects)
 - Effects limited to single subsystem stage
 - Change in a single coefficient affects all poles in DF

- Preferred over DF because of numerical stability

Figure 4.10 Cascade realization of digital filter
Parallel (Partial Fraction) Form

- Decompose transfer function using a partial fraction expansion
 - $H(z) = H_1(z) + H_2(z) + \ldots + H_K(z)$
 - $H_k(z) = \frac{b_0 + b_1 z^{-1}}{1 + a_1 z^{-1} + a_2 z^{-2}}$
- Be sure to remember that PFE requires numerator order less than denominator
 - Use polynomial long division
Matlab Filter Design

- **Realization tools:**
 - Finding polynomial roots
 - `roots.m`
 - `tf2zp.m`
 - Cascade form
 - \(H(z) = G \prod_{k=1}^{K} \frac{b_0k + b_1kz^{-1} + b_2kz^{-2}}{1 + a_1kz^{-1} + a_2kz^{-2}} \)
 - `zp2sos.m`
 - Parallel form
 - `Residuez.m`

- **Filter design tools:**
 - Order estimation tool
 - `butterord.m`
 - Coefficient tool
 - `butter.m`
 - Frequency transforms
 - `lp2hp.m`, `lp2bp.m`, `lp2bs.m`
 - Useful exploration tool
 - `fvtool.m`
 - Useful design tool
 - `fdatool.m`
 - Useful processing tool
 - `sptool.m`
Stability

- (Causal) IIR filters are stable if all poles are within the unit circle
 - \(|p_m| < 1\)
 - We will not consider marginally stable (single pole on unit circle)
- Consider poles of 2nd order filter (used in cascade and parallel forms)
 - \(A(z) = 1 + a_1 z^{-1} + a_2 z^{-2}\)
- Factor
 - \(A(z) = (1 - p_1 z^{-1})(1 - p_2 z^{-1})\)
 - \(A(z) = 1 - (p_1 + p_2) z^{-1} + p_1 p_2 z^{-2}\)
- Because poles must be inside the unit circle
 - \(|a_2| = |p_1 p_2| < 1\)
 - \(|a_1| < 1 + a_2\)
Coefficient Quantization

- Using fixed word lengths results in a quantized approximation of a filter
 \[H'(z) = \frac{\sum_{k=0}^{L-1} b'_k z^{-k}}{1+\sum_{k=1}^{M} a'_k z^{-k}} \]
- This can cause a mismatch from desired system \(H(z) \)
- Poles that are close to the unit circle may move outside and cause instability
 - This is exacerbated with higher order systems
Rounding Effects

• Using B bit architecture, products require $2B$ bits
 ▫ Must be rounded into smaller B bit container
• This results in noise error terms
 ▫ Can be simply modeled as additive term
• The order of cascade sections influences power of noise at output
 ▫ How should sections be paired and ordered?
• Need to optimize SQNR
 ▫ Trade-off with probability of arithmetic overflow
 ▫ Need to use scaling factors to prevent overflow
 ▫ Optimality when signal level is maximized without overflow
Cascade Ordering and Pairing

- Good results are obtained using simple rules
- Cascade ordering and pairing algorithm

1. Pair pole closest to unit circle with zero that is closest in z-plane
 - Minimize the chance of overflow
2. Apply 1 repeatedly until all poles and zeros are paired
3. Resulting 2nd -order sections can be ordered in two alternative ways
 - Increasing closeness to unit circle
 - Decreasing closeness to unit circle

Figure 6.67 Output noise power spectrum for 123 ordering (solid line) and 321 ordering (dashed line) of 2nd-order sections.
Recursive Resonator

- Filter with frequency response dominated at a single peak
 - Use complex-conjugate pole pair inside unit circle

- \(H(z) = \frac{A}{(1-r_p e^{j\omega_0 z^{-1}})(1-r_p e^{-j\omega_0 z^{-1}})} \)

- \(H(z) = \frac{A}{1-2r_p \cos(\omega_0)z^{-1}+r_p^2 z^{-2}} \)
 - \(A \) – normalization constant for unity gain at \(\omega_0 \)
 - \(0 < r_p < 1 \)
- Close to unit circle
 - Bandwidth \(\approx 2(1 - r_p) \)
 - Closer to \(r_p = 1 \), more peaked
Parametric Equalizer

- Add nearby zeros to the resonator
 - At same angle as poles ω_0
 - Similar radius
- Pole and zero counter balance one another
- $r_z < r_p$
 - Pole dominates because it is closer to unit circle
 - Generates peak at $\omega = \omega_0$
 - Provides boost to freq
- $r_z > r_p$
 - Zero dominates pole
 - Generates dip at $\omega = \omega_0$
 - Cuts freq
- Bandwidth still determined by r_p

Ex 4.18
- Create equalizer by changing gain at given frequency