EE482: Digital Signal Processing Applications

Spring 2014
TTh 14:30-15:45 CBC C222

Lecture 12
Speech Signal Processing
14/03/25

http://www.ee.unlv.edu/~b1morris/ee482/
Outline

- Speech Coding
- Speech Enhancement
- Speech Recognition
Speech Coding

- Digital representation of speech signal
 - Provide efficient transmission and storage

- Techniques to compress speech into digital codes and decompress into reconstructed signals
 - Trade-off between speech quality and low bit rate
 - Coding delay and algorithm complexity
Coding Techniques

• **Waveform coding**
 - Operate on the amplitude of speech signal on per sample basis

• **Analysis-by-synthesis coding**
 - Process signals by “frame”
 - Achieve higher compression rate by analyzing and coding spectral parameters that represent speech production model
 - Vocoder algorithms transmit coded parameters that are synthesized at receiver into speech
Waveform Coding

- Pulse code modulation (PCM)
 - Simple encoding method by uniform sampling and quantization of speech waveform

- Linear PCM
 - 12-bits/sample for good speech quality
 - 8 kHz sampling rate \rightarrow 96 kbps

- Non-linear companding (μ-law, A-law)
 - Quantize logarithm of speech signal for lower bit rate \rightarrow 64 kbps

- Adaptive differential PCM (ADPCM)
 - Use adaptive predictor on speech and quantize difference between speech sample and prediction
 - Lower bit rates because correlation between samples creates good prediction and error signal is smaller amplitude
Linear Predictive Coding (LPC)

- Speech production model with excitation input, gain, and vocal-tract filter

- Vocal tract model is a pipe from vocal cords to oral cavity (with coupled nasal tract)
 - Most important part of model because it changes shape to produce different sounds
 - Based on position of palate, tongue, and lips

- Vocal tract modeled as all pole filter
 - Match a formant (vocal-tract resonance or peaks of spectrum)
(Un)Voiced Sounds

- Voiced (e.g. vowels) – caused by vibration of vocal-cords with rate of vibration the pitch
 - Modeled with periodic pulse with fundamental (pitch) frequency
 - Generate periodic pulse train for excitation signal
- Unvoiced (e.g. “s”, “sh”, “f”) – no vibration
 - Use white noise for excitation signal
- Gain represents the amount of air from lungs and the voice loudness

- Speech sounds info [link]
Basic Vocoder Operation

- Process speech in frames
- Usually between 5-30 ms
- Use window function for less ringing
- Windows are overlapped
 - Smaller frame size and higher overlap percentage better captures speech transition → better speech quality
Code-Excited Linear Prediction (CELP)

- Algorithms based on LPC approach using analysis by synthesis scheme
- Coded parameters are analyzed to minimize the perceptually weighted error in synthesized speech
 - Closed-loop optimization with encoder and decoder together
- Optimize three components:
 - Time-varying filters \(\{1/A(z), P(z), F(z)\} \)
 - Perceptual weighting filter \(W(z) \)
 - Codebook excitation signal \(e_u(n) \)

- Notice the excitation, LPC coefficients \((1/A(z)) \), and pitch \(P(z) \) coefficients must be encoded and transmitted for decoding and synthesis
Synthesis Filter

- $1/A(z)$ filter updated each frame with Levinson-Durbin recursive algorithm
 - $\frac{1}{A(z)} = \frac{1}{1-\sum_{i=1}^{p} a_i z^{-i}}$
 - Coefficients used to estimate current speech sample from past samples
- LPC coefficients calculated using autocorrelation method on a frame
 - $r_m(j) = \sum_{n=0}^{N-1-j} x_m(n)x_m(n+j)$

- Solve for LPC coefficients using normal equations

- Can be solved recursively using Levinson-Durbin recursion (pg 334)
 - Matlab `levinson.m` and `lpc.m`
LPC Examples

- **Ex 9.2**
 - Use Levinson-Durbin to estimate LPC coefficients

- **Ex 9.3**
 - Repeat with higher order filter
 - Better match speech spectrum
Excitation Signals

- Short-term – noise signal
- Long-term – periodic signal
- Pitch synthesis filter models long-term correlation of speech to provide spectral structure
 - \[P(z) = \sum_{i=-L}^{L} b_i z^{-i(L_{opt}+i)} \]
 - \(L_{opt} \) - optimum pitch period
- Generally, a frame will be divided into subframes for better temporal analysis
 - Excitation signal is generated per subframe
- An excitation signal is formed as the combination of both short-term and long-term signals
 - \[e(n) = e_v(n) + e_u(n) \]
 - \(e_v(n) \) – voiced long-term prediction excitation
 - \(e_u(n) \) – unvoiced noise selected from stochastic codebook (a set of stochastic signals)
- Both excitation signals are passed through \(H(z) \) (combined short-term synthesis and perceptual weighting) to find error
 - Will optimize pitch (first) separately from stochastic contribution
Perceptual-Based Minimization

- Perceptual weighting filter $W(z)$ used to control the error calculation
 - Emphasize the weight of errors between format frequencies
 - Shape noise spectrum to place errors in formant regions where humans ears are not sensitive
 - Reduce noise in formant nulls
 - $W(z) = \frac{A(z/\gamma_1)}{A(z/\gamma_2)}$
 - $\gamma_1 = 0.9, \gamma_2 = 0.5$

- Ex 9.5
- Examine perceptual weighting filter

![A(Z) and W(Z) filter spectrum responses](chart)

Lower γ_2 causes more attenuation at formant frequencies
- Allows more distortion
Voice Activity Detection (VAD)

- Critical function for speech analysis (for reduction in bandwidth for coding)
- Basic VAD assumptions
 - Spectrum of speech changes in short time but background is relatively stationary
 - Energy level of active speech is higher than background noise

- Practical speech applications highpass filter to remove low-frequency noise
 - Speech is considered in 300 to 1000 Hz range
Simple VAD Algorithm

- Calculate frame energy
 - \(E_n = \sum_{k=K_1}^{K_2} |X(k)|^2 \)
 - \(K_1 \) bin for 300 Hz
 - \(K_2 \) bin for 1000 Hz
 - Recursively compute for short and long windows
- Estimate noise level (floor) \(N_f \)
 - Increase noise floor slowly at beginning of speech and quickly at end
- Calculate adaptive threshold
 - \(T_r = \frac{N_f}{1-\alpha_l} + \beta \)
 - \(\alpha_l \) - long window length
 - \(\beta \) – small zero margin
- Threshold signal energy with threshold to determine speech or silence
 - Need a hangover period = 90 ms to handle tail of speech

Figure 9.7 Block diagram of simple VAD algorithm
Speech Enhancement

- Needed because speech may be acquired in a noisy environment
 - Background noise degrades the quality or intelligibility of speech signals
- In addition, signal processing techniques are generally designed under low-noise assumption
 - Degrades performance with noisy environments
- Many speech enhancement algorithms look to reduce noise or suppress specific interference
Noise Reduction

• Will focus on single channel techniques
 ▫ Dual-channel - adaptive noise cancellation from Chapter 6
 ▫ Multi-channel – beamforming and blind source separation

• Three classes:
 ▫ Noise subtraction – subtract estimated amplitude spectrum of noise from noisy signal
 ▫ Harmonic-related suppression – track fundamental frequency with adaptive comb filter to reduce periodic noise
 ▫ Vocoder re-synthesis – estimate speech-model parameters and synthesize noiseless speech
Noise Subtraction

- Input is noisy speech + stationary noise
- Estimate noise characteristics during silent period between utterances
 - Need robust VAD system
- Spectral subtraction – implemented in frequency domain
 - Based on short-time magnitude spectra estimation
- Subtract estimated noise mag spectrum from input signal
- Reconstruct enhanced speech signal using IFFT
 - Coefficients are difference in mag and original phase
Short-Time Spectrum Estimation

- During non-speech frames, noise spectrum is estimated
- During speech frames, previously estimated noise spectrum is subtracted

Output for non-speech frames:
 - Set frame to zero
 - Attenuate signal by scaling by factor < 1

Better not to have complete silence in non-speech areas:
 - Accentuates noise in speech frames
 - Use 30 dB attenuation

Figure 9.14 Block diagram of the spectral subtraction algorithm
Magnitude Spectrum Subtraction

- Assumes that background noise is stationary and does not change at subsequent frames
- With changing background, algorithm has sufficient time to estimate new noise spectrum

- Modeling noisy speech with noise $v(n)$
 - $x(n) = s(n) + v(n)$
 - $X(k) = S(k) + V(k)$

- Speech estimation
 - $|\hat{S}(k)| = |X(k)| - E|V(k)|$
 - $E|V(k)|$ - estimated noise during non-speech

- Assume human hearing is insensitive to noise in the phase spectrum (only magnitude matters)

$$S(k) = |\hat{S}(k)| \frac{X(k)}{|X(k)|}$$

$$S(k) = [|X(k)| - E|V(k)|] \frac{X(k)}{|X(k)|}$$

$$S(k) = H(k)X(k)$$
 - $H(k) = 1 - \frac{E|V(k)|}{|X(k)|}$

- Notice the phase spectrum never has to be explicitly calculated
 - Avoid computations for arctan
Speech Recognition

- Different than signal processing up to now
 - Signal input \rightarrow (enhanced) signal output
- Automatic speech recognition (ASR)
 - Convert speech signal into “text”
 - Label describing speech
- This is a pattern recognition task
ASR Applications and Issues

- Applications
 - Dictation machines
 - Interfaces to devices
 - Reservation systems, phone service, stock quotes, directory assistance
 - Transcribing databases and searching
 - Aids for handicapped
 - Language to language

- Sources of variability in speech
 - Speaker
 - Accent, social context, mood/style, vocal tract size, male/female/child
 - Acoustic environment
 - Background noise reverberation
 - Microphone
 - Non-linear and spectral characteristics
 - Channel
 - Echoes, distortion
Speech Recognition System

- Feature extraction
 - Represent speech content
 - Typically will use mel-frequency cepstrum (MFCC) coefficients

- Recognizer
 - Pattern recognition system that maps features into text
 - Hidden Markov model (HMM) is popular choice
 - See HTK Speech Recognition Toolkit [link]
Cepstrum

• “Spec”-trum in reverse: “ceps”-strum
• Cepstrum can be seen as information about rate of change in the different spectrum bands
• Calculation:
 ▫ Take FFT: \(x(n) \rightarrow X(e^{j\omega}) \)
 ▫ Take log magnitude: \(\log |X(e^{j\omega})| \)
 ▫ Take iFFT: \(c[n] = \mathcal{F}^{-1} \{ \log |X(e^{j\omega})| \} \)
• MFCC: Use non-linear frequency bands that mimic human perception
 ▫ Lower frequency have higher resolution

• Using excitation and vocal track model
• \(|X(e^{j\omega})| = |H(e^{j\omega})| |U(e^{j\omega})| \)
• \(\log |X(e^{j\omega})| = \log |H(e^{j\omega})| + \log |U(e^{j\omega})| \)
• \(c_x(n) = c_h(n) + c_u(n) \)
 ▫ Can separate excitation from vocal tract with “liftering” (excitation not required for recognition)
Recognition System

- The recognition system is a classifier
 - Compares input speech with a template of known speech to generate output text label

\[x(n) \rightarrow \text{classifier} \rightarrow \text{text} \]

- Templates (reference) patterns
 - \(\{ R^1, R^2, \ldots, R^V \} \)
 - \(V \) – size of vocabulary
 - \(R^j = \{ r_{1}^{j}, r_{2}^{j}, \ldots, r_{n_{j}}^{j} \} \)
 - \(n_{j} \) depends on particular template

- Two main tasks:
 - Template design
 - Comparing template with a given observation

- Issues
 - Unequal length data
 - Alignment of speech
 - Distortion (distance) measure for comparison
Log Spectral Distortion

• Given two speech signals $s[n]$ and $s'[n]$

• Log spectral distortion
 ▫ $V(\omega) = \log S(\omega) - \log S'(\omega)$
 ▫ $V(\omega) = \sum (c[n] - c'[n])e^{-j\omega n}$
 ▫ $d^2 (S, S') = \frac{1}{2\pi} \int_{-\pi}^{\pi} |V(\omega)|^2 d\omega$
 ▫ $d^2 = \sum |c[n] - c'[n]|^2$

• Cepstral coefficients as features lead to simple computational procedure
 ▫ $c[0]$ usually not considered in comparison (measure of intensity)
 ▫ Often cepstra derivatives used in representation
Dynamic Time Warping

- Generic method to compare sequences of unequal length
 - Align sequences so that distance is minimized
- Misaligned sequences may be very similar but have large distortion
 - Need alignment to handle different speeds of utterance

- Warping function to align two sequences can be solved efficiently with dynamic program
 - Search for a minimum cost path matching elements of sequences

- Each element (cepstrum for a frame) is compared between two sequences to build cost matrix
 - Cost it the distortion between sequence elements
Hidden Markov Models (HMM)

- DTW is restricted to small tasks
 - Cannot include statistical information and to design templates
- HMM is used for statistical model of speech
 - States of HMM correspond to phonemes
 - Don’t know state, but observe measurement of state (sound) probabilistically related to state
- Use HMM package

- Use left-to-right HMM

- Must learn for each “word”:
 - Observation distributions b_i
 - State transitions a_{ij}
- Recognition by evaluating likelihood that a HMM word generated observation $x(n)$