
Digital Signal Processing Applications EE482/682: Spring 24

Homework #6
Due M 4/08

You must turn in your code as well as output files. Please generate a report that contains the code
and ouput in a single readable format.

Visit the book website to download companion software, including all the example problems.
http://www.wiley.com/WileyCDA/WileyTitle/productCd-1118414322.html

Test Images
Download the sample images from the class website
http://www.ee.unlv.edu/~b1morris/ee482images/hw06

1. (KLT 11.4)

Solution

The original image and the gamma corrected version is shown in Fig. 1. Notice the dark
pixels on the left side of the histogram have been shifted toward the right. The code uses
Example 11.3 to setup the images.

(a) Orginal Image (b) Gamma Corrected Image
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(c) Orginal Histogram
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(d) Gamma Corrected Histogram

Figure 1: KLT 11.4

1 %% convert to ycbcr for intensity

2 [M,N,D] =size(RGB);

3 ycbcr1 = double(rgb2ycbcr(RGB))/255;

4 ycbcr2 = double(rgb2ycbcr(RGBgamma))/255;

5 %display histogram

6 h1 = hist(reshape(ycbcr1 (:,:,1), M*N,1), 256);

7 h2 = hist(reshape(ycbcr2 (:,:,1), M*N,1), 256);
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8 h=figure;

9 bar ((0:255) /255, h1);

10 xlabel('intensity ')

11 ylabel('count ')

12 set(gca ,'xlim ' ,[0 1]);

13 h=figure;

14 bar ((0:255) /255, h2);

15 xlabel('intensity ')

16 ylabel('count ')

17 set(gca ,'xlim ' ,[0 1]);

2. Histogram Equalization

(a) Perform histogram equalization on the jetplane.png image using 256, 128, and 64
bins. Compare the original image and the histogram equalized images by plotting the
corresponding histograms and images side-by-side in a 2× 2 subplot matrix for each of
the bin sizes.

(b) Perform the equalization in 32 × 32 blocks. Display the output image. You will find
blockproc.m useful.

Solution

(a) The images and associated histograms are shown in Fig. 2. Notice that as the number of
bins used for equalization decreases, the number of unique values in the image decreases
and spacing between values is greater. However, the output images are quite perceptually
similar.
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(a) Original Image
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(b) 256 bins
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(c) 128 bins
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(d) 64 bins

Figure 2: Problem 2(a)

1 I = double(rgb2gray (( imread('hw06\jetplane.png'))))/255;

2 horig = hist(I(:), 256);

3 h=figure;

4 bar ((0:255) /255, horig); set(gca ,'xlim ' ,[0 1]);

5 xlabel('intensity '), ylabel('count ');
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Figure 3: Problem 2(b)

6 bmSaveFigure(h, 'jetplane_hist ');

7 for nbins = [256, 128, 64]

8 Ieq = histeq(I, nbins);

9 heq = hist(Ieq(:), 256);

10 imwrite(Ieq , sprintf('jetplane_n %03d.jpg', nbins));

11 h=figure;

12 bar ((0:255) /255, heq); set(gca ,'xlim ' ,[0 1]);

13 xlabel('intensity '), ylabel('count ');

14 bmSaveFigure(h, sprintf('jetplane_hist_n %03d', nbins));

15 end

(b) Histogram equalization with block processing is shown in Fig. 3. Notice the block
artifacts and the noise that occurs in the areas of cloud that were all white (lower right
and left sides of the image).

1 fun = @(block_struct) histeq(block_struct.data , 256);

2 Iblock = blockproc(I, [32,32], fun);

3. Noise Filtering

(a) Consider image DSCN0479-001.JPG as a perfect image. Add white Gaussian noise with
variance 0.005. Smooth with a 3× 3 and 7× 7 box filter and a median filter. Compute
the mean squared error (MSE)

MSE =
1

MN

∑
m

∑
n

(I1(m,n)− I2(m,n))2

and the peak signal-to-noise ratio (PSNR)

PSNR = 20× log10(255/
√
MSE)
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for the noise reduced images. Which filter has the best results based on the error
measures? How do the results compare visually?

(b) Repeat (a) with salt and pepper noise with noise density 0.05.

(c) Do the filtering again but this time on a real noisy image DSCN0482-001.JPG obtained
at higher ISO. Compare the results visually only this time. Which filter works best for
“real” noise? How much time does each type of filter require (use tick.m and toc.m)?

Solution

(a) The output images after filtering the noisy image using different filters is shown in Fig.
4. Notice the larger filters produce more blurring, but visually there is little apparent
diffrence between median and box (average) filters. The median tends to produce a more
“mosaic”-like image. The associated MSE and PSNR are provided in Table 1. Notice
the 3× 3 box filter has the lowest MSE and highest PSNR indicating the best Gaussian
noise removal performance. The code framework for all parts of the problem are similar.

1 I = imread('hw06\DSCN0479 -001. JPG');

2 I = rgb2gray(I);

3 [M,N] = size(I);

4 imwrite(I, '3_clean.jpg');

5 I2 = imnoise(I, 'gaussian ', 0, 0.005);

6 imwrite(I2 , '3_gauss.jpg')

7
8 emetric = zeros (2,5);

9 %mse

10 emetric (1,1) = (1/(M*N))*sum((I(:)-I2(:)).^2);

11 %psnr

12 emetric (2,1) = 20* log10 (255 / sqrt(emetric (1,1)));

13
14 %3x3 box

15 Ifilt = imfilter(I2, 1/9* ones (3));

16 %mse

17 emetric (1,2) = (1/(M*N))*sum((I(:)-Ifilt (:)).^2);

18 %psnr

19 emetric (2,2) = 20* log10 (255 / sqrt(emetric (1,2)));

20 imwrite(Ifilt , '3_box3x3.jpg')

21
22 %7x7 box

23 Ifilt = imfilter(I2, 1/49* ones (7));

24 %mse

25 emetric (1,3) = (1/(M*N))*sum((I(:)-Ifilt (:)).^2);

26 %psnr

27 emetric (2,3) = 20* log10 (255 / sqrt(emetric (1,3)));

28 imwrite(Ifilt , '3_box7x7.jpg')

29
30 %3x3 median

31 Ifilt = medfilt2(I2, [3 3]);

32 %mse

33 emetric (1,4) = (1/(M*N))*sum((I(:)-Ifilt (:)).^2);
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Table 1: Problem 3a - Gaussian Noise

Metric Noise 3× 3 Box 7× 7 Box 3× 3 Median 7× 7 Median
MSE 71.69 32.02 41.72 37.49 39.10
PNSR 29.58 33.08 31.92 32.39 32.21

34 %psnr

35 emetric (2,4) = 20* log10 (255 / sqrt(emetric (1,4)));

36 imwrite(Ifilt , '3_med3x3.jpg')

37
38 %7x7 median

39 Ifilt = medfilt2(I2, [7 7]);

40 %mse

41 emetric (1,5) = (1/(M*N))*sum((I(:)-Ifilt (:)).^2);

42 %psnr

43 emetric (2,5) = 20* log10 (255 / sqrt(emetric (1,5)));

44 imwrite(Ifilt , '3_med7x7.jpg')

(a) Original Image (b) 3× 3 Box (c) 3× 3 Median

(d) Noise Image (e) 7× 7 Box (f) 7× 7 Median

Figure 4: Problem 3(a) - Gaussian Noise

(b) The repeated experiment with salt and pepper noise results are Fig. 5 and Table 2.
Notice the 3 × 3 median filter has the lowest MSE and highest PSNR indicating the
best salt and pepper noise removal performance (clearly the case visually). The raw salt
and pepper image has the lowest MSE but doesn’t look as good as the filtered versions
indicating that error metrics do not always match visual quality. In addition, these
examples show how the size of the filter needs to be matched to the noise characteristics
for best performance. E.g. larger filters do not always mean “better” performance
because of blurring.

(c) The results for an image with real noise from high ISO is presented in Fig. 6 and Table
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(a) Original Image (b) 3× 3 Box (c) 3× 3 Median

(d) Noise Image (e) 7× 7 Box (f) 7× 7 Median

Figure 5: Problem 3(b) - Salt and Pepper Noise

Table 2: Problem 3b - Salt and Pepper Noise

Metric Noise 3× 3 Box 7× 7 Box 3× 3 Median 7× 7 Median
MSE 6.25 42.92 47.38 12.09 31.05
PNSR 40.18 31.80 31.37 37.31 33.21

6. Visually the 3× 3 filters are the best performing but it seems as if the median filter
has the lowest MSE. However, these numbers really aren’t meaningful because we do
not have a “clean” image without noise to compare with only the noisy image.

4. Spatial Domain Filtering

The following question operates on the city.jpg image.

(a) Perform image smoothing using a 7×7 averaging filter and a Gaussian filter with σ = 0.5
and 3. Compare the outputs.

(b) Perform edge enhancement using the Sobel operator (Matlab’s default parameters). Re-
peat using the Laplacian and Laplacian of Gaussian operators. Compare the outputs.
Be sure to read the help info for fspecial.m.

Solution

(a) The filtered images are shown in Fig. 7. The averaging filter has significant blurring.

Table 3: Problem 3c - Real Noise

Metric 3× 3 Box 7× 7 Box 3× 3 Median 7× 7 Median
MSE 12.00 31.71 7.89 22.85
PNSR 37.34 33.12 39.16 34.54
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(a) Original Image (b) 3× 3 Box (c) 3× 3 Median

(d) 7× 7 Box (e) 7× 7 Median

Figure 6: Problem 3(c) - Real Noise

The larger σ = 3.0 has similar smoothing to the averaging filter while the smaller σ = 0.5
maintains sharpness. The Gaussian filter is able to trade off sharpness without changing
the kernel size.

1 I = imread('hw06/city.jpg');

2 H1 = fspecial('average ', [7 7]);

3 H2 = fspecial('gaussian ', [7 7], 0.5);

4 H3 = fspecial('gaussian ', [7 7], 3.0);

5
6 I1 = imfilter(I, H1);

7 I2 = imfilter(I, H2);

8 I3 = imfilter(I, H3);

(b) The Sobel operator gives thick edges and the default parameters triggers more on hori-
zontal edges. The Laplacian and the LoG have very similar performance on this image.
However, the LoG image seems to have better edge distinction (darker color). The edge
images have inverted color for printing purposes.

1 I = rgb2gray(imread('hw06/city.jpg'));

2 H1 = fspecial('sobel ');

3 H2 = fspecial('laplacian ');

4 H3 = fspecial('log');

5
6 I1 = imfilter(I, H1);

7 I2 = imfilter(I, H2);

8 I3 = imfilter(I, H3);

5. Frequency Domain Filtering

The following question operates on the city.jpg image.
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(a) Original Image (b) Gaussian σ = 0.5

(c) Box (d) Gaussian σ = 3.0

Figure 7: Problem 4(a) - Smoothing

(a) Find the Fourier transform of the image. Be sure to center the frequencies using
fftshift.m.

(b) Perform image smoothing in the frequency domain using the filters defined in the previ-
ous problem. Compare the output images from the two methods (spatial and frequency).

(c) Perform edge enhancement using the filters defined in the previous problem.

(d) Define a lowpass filter in the frequency domain with radius of 1/4 the height. Display
the LP filter in the frequency domain and show the result of filtering the input image.

(e) Repeat with a rectangular filter with the same dimension as the ideal lowpass. Compare
the results between the ideal filter and the rectangular approximation.

Solution

(a) The FFT in dB of the image is shown in Fig. 9. Using fftshift.m places the lowest
frequency (0, 0) in the center of the image. There are strong frequency components in
the vertical and 45◦ directions.

(b) The results are visually the same as shown in Fig. 7.

(c) The results are visually the same as shown in Fig. 8.

(d) The ideal LP filter is shown in Fig. 10.
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(a) Original Image (b) Sobel

(c) Laplacian (d) Laplacian of Gaussian

Figure 8: Problem 4(b) - Edge Enhancement

(a) FFT (b) FFT Shift

Figure 9: Problem 5(a) - FFT [dB]

(e) The approximation is shown in Fig. 11. The resulting image looks almost the same as
the circular but it much easier to create.

6. DCT
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(a) Ideal LP Filter (b) Output

Figure 10: Problem 5(d) - Ideal LP Frequency Domain Filter

(a) LP Approximation Filter (b) Output

Figure 11: Problem 5(e) - Rectangular LP Approximation

The following question operates on the jetplane.png image.

(a) Write a function to compute the DCT coefficients for the image as described in Figure
11.12.

(b) Give the coefficient output for block 3523 (raster scan ordering). Show the output both
as a raw matrix and as the zig-zagged ordered vector.

(c) Repeat for block 2637. Compare the outputs of the blocks and comment on results.

Solutions

(a) Process each block of the image, compute the DCT coefficients and organize into column
vectors using the zig-zag ordering.

1 I = double(rgb2gray (( imread('hw06\jetplane.png'))))/255;

2
3 %annoymous function

4 fun = @(block_struct) zigzag8(dct2(block_struct.data));

5 f = @(I) blockproc(I, [8 8], fun);
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6
7 %create list of dct vectors

8 C = f(I);

9 C2 = reshape(C', 8*8, []);

10
11 function [v] = zigzag8(b)

12 %zig -zag ordering of 8x8 DCT2 block

13
14 v=[ b(1,1) b(1,2) b(2,1) b(3,1) b(2,2) ...

15 b(1,3) b(1,4) b(2,3) b(3,2) b(4,1) ...

16 b(5,1) b(4,2) b(3,3) b(2,4) b(1,5) ...

17 b(1,6) b(2,5) b(3,4) b(4,3) b(5,2) ...

18 b(6,1) b(7,1) b(6,2) b(5,3) b(4,4) ...

19 b(3,5) b(2,6) b(1,7) b(1,8) b(2,7) ...

20 b(3,6) b(4,5) b(5,4) b(6,3) b(7,2) ...

21 b(8,1) b(8,2) b(7,3) b(6,4) b(5,5) ...

22 b(4,6) b(3,7) b(2,8) b(3,8) b(4,7) ...

23 b(5,6) b(6,5) b(7,4) b(8,3) b(8,4) ...

24 b(7,5) b(6,6) b(5,7) b(4,8) b(5,8) ...

25 b(6,7) b(7,6) b(8,5) b(8,6) b(7,7) ...

26 b(6,8) b(7,8) b(8,7) b(8,8)];

(b) The DCT coefficients are shown in Fig. 12.

(c) The DCT coefficients are shown in Fig. 12. It is clear that the DC coefficient is larger
for the first block because this is a higher intensity block of all white. The second block
in contrast is lower intensity and has texture. The texture results in more variation in
the DCT coefficients, meaning more bits required for reproduction.
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(a) 3523 Image Patch
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(b) 3523 DCT Block
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(c) 2637 Image Patch
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(d) 2637 DCT Block

Figure 12: Problem 6(b)(c) - DCT
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