EE482/682: DSP APPLICATIONS

INTRODUCTION

http://www.ee.unlv.edu/~b1morris/ee482
OUTLINE

- Intro to DSP
- Real-time DSP system components
- Matlab primer
SIGNALS

- Continuous-time (CT or analog)
 - Everyday signals from nature
 - Defined continuously in “time” – at all time instances
 - Infinite amplitude value resolution
 - Can be processed using analog electronics (active and passive circuit elements)

- Discrete-time (DT)
 - Only defined on particular set of “time” instances
 - Sequence of numbers with continuous value range
 - Used for theoretical study and mathematical convenience

- Digital
 - Both discrete “time” and discrete amplitude values
 - Processed with computers and DSP chips
WHAT IS DSP?

- Digital representation of signals (coding)
- Design and use of digital systems to
 - Analyze
 - Modify
 - Store
 - Transmit
 - Extract information
DSP ADVANTAGES

- Flexibility
 - Software implementation for upgrades, multiple tasks, etc.

- Reproducibility
 - Easier to repeat implementation, to store and transfer digital signals

- Reliability
 - DSP hardware design is quite robust due in modern computation age

- Complexity
 - Can implement sophisticated tasks on specialized hardware

- Cost
 - Moore’s Law for semiconductors, software development cycle and powerful packages (e.g. Matlab, Python)
DSP DISADVANTAGES

- Unnatural
 - Our everyday signals come from analog processes

- Physical limitations
 - Bandwidth of DSP system limited by sampling rate, aliasing

- Numerical effects
 - Limited precision and dynamic range, quantization and arithmetic errors
REAL-TIME DSP SYSTEMS

- Non-real-time
 - Signals that are stored in digital form
 - Not necessarily for current or real-time data

- Real-time
 - Demands design to ensure tasks are completed within a given timeframe
 - Typically expect this to be related to the current time

- Emphasis on real-time in this class
 - Fun processing streaming data
 - See bandwidth processing time relationship in Section 1.3.4
 - Faster processing means less available bandwidth
CT Analog signal

- $x(t)$ \quad t \in \mathbb{R}$

DT/digital signal

- $x(n)$ \quad n \in \mathbb{Z}$

ADC – analog to digital conversion

DAC – digital to analog conversion

Analog signals are converted to electrical by a transducer

- E.g. Microphone

Amplifier

- Gain selected to match ADC
- Often need auto gain control (e.g. white balance)

Antialiasing filter

- Deal with finite bandwidth of digital system

Reconstruction filter

- Interpolation between digital and analog signal
Sampling
- $x[n] = x(nT)$
 - T – sampling period
- Analog signal value extracted at fixed uniformly spaced times

Shannon’s sampling theorem
- $f_s = \frac{1}{T} > 2f_M$
 - Sampling frequency must be twice the bandwidth to avoid aliasing
- Nyquist rate - $f_n = 2f_M$
Quantization
- Amplitude value is represented by one of 2^B binary levels
- Rounding – set value to closest quantization level
- Truncation – replaces by value below it (chop bits)

Quantization error/noise
- Difference between quantized value and original value
- Appears as random noise at output of converter
- Signal-to-quantization-noise ratio (QNR)
 - $SQNR \approx 6B \text{ dB}$
DACs are zero-order-hold
- Keep fixed sample value until next sample

Smoothing with low pass (LP) filter is done to remove high frequency components of “staircase”
- LP filter in reconstruction block

Figure 1.6 Staircase waveform generated by DAC and the smoothed signal
MATLAB PRIMER

- See the web for many tutorials and help
 - https://matlabacademy.mathworks.com/

- Matlab has very good in program help
 - Use the help.m and doc.m commands

- Go through tutorials
 - Signal processing
 - Image processing
MATLAB PRIMER

- Command Window
- Interactive interpreted area
- The calculator space
Workspace

- Lists all variables in memory
- All are currently available
• **Editor**
 - Build script files (m-files)
 - What makes Matlab so much more than a calculator

• **M-files**
 - Learn to write these, it will make your life much easier
 - Provides ability to document and re-run code quickly
 - Must submit for class assignments

• **Note:**
 - ; suppresses command window output
 - % is comment character
- **Variables**
 - Quick way to read contents of your workspace variables

- **Useful for debugging**
 - There is a **debugger** in Matlab!
 - Use the keyboard shortcuts (F5 run, shift-F5 stop, F10 step, F11 step-in)
 - Must write m-files to utilize this

- **Ctrl+c to kill running code**