EE482/682: DSP APPLICATIONS

CH9 SPEECH SIGNAL PROCESSING
OUTLINE

- Speech Coding
- Speech Enhancement
- Speech Recognition
SPEECH CODING

- Digital representation of speech signal
 - Provide efficient transmission and storage

- Techniques to compress speech into digital codes and decompress into reconstructed signals
 - Trade-off between speech quality and low bit rate
 - Coding delay and algorithm complexity
CODING TECHNIQUES

- **Waveform coding**
 - Operate on the amplitude of speech signal on per sample basis

- **Analysis-by-synthesis coding**
 - Process signals by “frame”
 - Achieve higher compression rate by analyzing and coding spectral parameters that represent speech production model
 - Vocoder algorithms transmit coded parameters that are synthesized at receiver into speech
Pulse code modulation (PCM)
- Simple encoding method by uniform sampling and quantization of speech waveform

Linear PCM
- 12-bits/sample for good speech quality
- 8 kHz sampling rate \rightarrow 96 kbps

Non-linear companding (μ-law, A-law)
- Quantize logarithm of speech signal for lower bit rate \rightarrow 64 kbps

Adaptive differential PCM (ADPCM)
- Use adaptive predictor on speech and quantize difference between speech sample and prediction
- Lower bit rates because correlation between samples creates good prediction and error signal is smaller amplitude
LINEAR PREDICTIVE CODING (LPC)

- Speech production model with excitation input, gain, and vocal-tract filter

- Vocal tract model is a pipe from vocal cords to oral cavity (with coupled nasal tract)
 - Most important part of model because it changes shape to produce different sounds
 - Based on position of palate, tongue, and lips

- Vocal tract modeled as all pole filter
 - Match a formant (vocal-tract resonance or peaks of spectrum)
(UN)VOICED SOUNDS

- Voiced (e.g. vowels) – caused by vibration of vocal-cords with rate of vibration the pitch
 - Modeled with periodic pulse with fundamental (pitch) frequency
 - Generate periodic pulse train for excitation signal
- Unvoiced (e.g. “s”, “sh”, “f”) – no vibration
 - Use white noise for excitation signal
- Gain represents the amount of air from lungs and the voice loudness

Speech sounds info [link]
BASIC VOCODER OPERATION

- Process speech in frames
- Usually between 5-30 ms
- Use window function for less ringing
- Windows are overlapped
 - Smaller frame size and higher overlap percentage better captures speech transition \(\rightarrow\) better speech quality
Algorithms based on LPC approach using analysis by synthesis scheme

Coded parameters are analyzed to minimize the perceptually weighted error in synthesized speech

- Closed-loop optimization with encoder and decoder together

Optimize three components:

- Time-varying filters \(\{1/A(z), P(z), F(z)\} \)
- Perceptual weighting filter \(W(z) \)
- Codebook excitation signal \(e_u(n) \)

Notice the excitation, LPC coefficients \((1/A(z)) \), and pitch \((P(z)) \) coefficients must be encoded and transmitted for decoding and synthesis.
SYNTHESIS FILTER

- $1/A(z)$ filter updated each frame with Levinson-Durbin recursive algorithm

 \[
 \frac{1}{A(z)} = \frac{1}{1 - \sum_{i=1}^{p} a_i z^{-i}}
 \]

 - Coefficients used to estimate current speech sample from past samples

- LPC coefficients calculated using autocorrelation method on a frame

 \[
 r_m(j) = \sum_{n=0}^{N-1-j} x_m(n)x_m(n+j)
 \]

- Solve for LPC coefficients using normal equations

\[
\begin{bmatrix}
 r_m(0) & r_m(1) & \cdots & r_m(p-1) \\
 r_m(1) & r_m(0) & \cdots & r_m(p-2) \\
 \vdots & \vdots & \ddots & \vdots \\
 r_m(p-1) & r_m(p-2) & \cdots & r_m(0)
\end{bmatrix}
\begin{bmatrix}
 a_1 \\
 a_2 \\
 \vdots \\
 a_p
\end{bmatrix}
= \begin{bmatrix}
 r_m(1) \\
 r_m(2) \\
 \vdots \\
 r_m(p)
\end{bmatrix}.
\]

- Can be solved recursively using Levinson-Durbin recursion (pg 334)

 - Matlab levinson.m and lpc.m
LPC EXAMPLES

- **Ex 9.2**
 - Use Levinson-Durbin to estimate LPC coefficients

- **Ex 9.3**
 - Repeat with higher order filter
 - Better match speech spectrum
EXCITATION SIGNALS

- Short-term – noise signal
- Long-term – periodic signal
- Pitch synthesis filter models long-term correlation of speech to provide spectral structure
 - \(P(z) = \sum_{i=-L}^{L} b_i z^{-(L_{opt}+i)} \)
 - \(L_{opt} \) - optimum pitch period
- Generally, a frame will be divided into subframes for better temporal analysis
 - Excitation signal is generated per subframe
- An excitation signal is formed as the combination of both short-term and long-term signals
 - \(e(n) = e_v(n) + e_u(n) \)
 - \(e_v(n) \) – voiced long-term prediction excitation
 - \(e_u(n) \) – unvoiced noise selected from stochastic codebook (a set of stochastic signals)
- Both excitation signals are passed through \(H(z) \) (combined short-term synthesis and perceptual weighting) to find error
 - Will optimize pitch (first) separately from stochastic contribution
Perceptual weighting filter $W(z)$ used to control the error calculation

- Emphasize the weight of errors between formant frequencies
 - Shape noise spectrum to place errors in formant regions where humans' ears are not sensitive
 - Reduce noise in formant nulls

- $W(z) = \frac{A(z/\gamma_1)}{A(z/\gamma_2)}$

- $\gamma_1 = 0.9, \gamma_2 = 0.5$

- Ex 9.5

Examine perceptual weighting filter

Lower γ_2 causes more attenuation at formant frequencies

- Allows more distortion
VOICE ACTIVITY DETECTION (VAD)

- Critical function for speech analysis (for reduction in bandwidth for coding)

- Basic VAD assumptions
 - Spectrum of speech changes in short time but background is relatively stationary
 - Energy level of active speech is higher than background noise

- Practical speech applications highpass filter to remove low-frequency noise
 - Speech is considered in 300 to 1000 Hz range
SIMPLE VAD ALGORITHM

- Calculate frame energy

 \[E_n = \sum_{k=K_1}^{K_2} |X(k)|^2 \]

 - \(K_1 \) bin for 300 Hz
 - \(K_2 \) bin for 1000 Hz
 - Recursively compute for short and long windows

- Estimate noise level (floor) \(N_f \)

 - Increase noise floor slowly at beginning of speech and quickly at end

- Calculate adaptive threshold

 \[T_r = \frac{N_f}{1-\alpha_l} + \beta \]

 - \(\alpha_l \) - long window length
 - \(\beta \) – small zero margin

- Threshold signal energy with threshold to determine speech or silence

 - Need a hangover period = 90 ms to handle tail of speech
SPEECH ENHANCEMENT

- Needed because speech may be acquired in a noisy environment
 - Background noise degrades the quality or intelligibility of speech signals
- In addition, signal processing techniques are generally designed under low-noise assumption
 - Degrades performance with noisy environments

- Many speech enhancement algorithms look to reduce noise or suppress specific interference
Will focus on single channel techniques
- Dual-channel - adaptive noise cancellation from Chapter 6
- Multi-channel – beamforming and blind source separation
Three classes:
- Noise subtraction – subtract estimated amplitude spectrum of noise from noisy signal
- Harmonic-related suppression – track fundamental frequency with adaptive comb filter to reduce periodic noise
- Vocoder re-synthesis – estimate speech-model parameters and synthesize noiseless speech
NOISE SUBTRACTION

- Input is noisy speech + stationary noise
- Estimate noise characteristics during silent period between utterances
 - Need robust VAD system
- Spectral subtraction – implemented in frequency domain
 - Based on short-time magnitude spectra estimation
- Subtract estimated noise mag spectrum from input signal
- Reconstruct enhanced speech signal using IFFT
 - Coefficients are difference in mag and original phase

Figure 9.13 A single-channel speech enhancement system

![Block diagram of the spectral subtraction algorithm](image)
During non-speech frames, noise spectrum is estimated
During speech frames, previously estimated noise spectrum is subtracted

- Output for non-speech frames
 - Set frame to zero
 - Attenuate signal by scaling by factor < 1

- Better not to have complete silence in non-speech areas
 - Accentuates noise in speech frames
 - Use 30 dB attenuation
MAGNITUDE SPECTRUM SUBTRACTION

- Assumes that background noise is stationary and does not change at subsequent frames
- With changing background, algorithm has sufficient time to estimate new noise spectrum
- Modeling noisy speech with noise $v(n)$
 - $x(n) = s(n) + v(n)$
 - $X(k) = S(k) + V(k)$
- Speech estimation
 - $|\hat{S}(k)| = |X(k)| - E|V(k)|$
 - $E|V(k)|$ - estimated noise during non-speech
- Assume human hearing is insensitive to noise in the phase spectrum (only magnitude matters)
 - $\hat{S}(k) = |\hat{S}(k)| \frac{X(k)}{|X(k)|}$
 - $\hat{S}(k) = [|X(k)| - E|V(k)|] \frac{X(k)}{|X(k)|}$
 - $\hat{S}(k) = H(k)X(k)$
 - $H(k) = 1 - \frac{E|V(k)|}{|X(k)|}$
- Notice the phase spectrum never has to be explicitly calculated
 - Avoid computations for arctan
SPEECH RECOGNITION

- Different than signal processing up to now

 \[x(n) \xrightarrow{\text{Signal Processing}} y(n) \]

- Signal input \(\rightarrow\) (enhanced) signal output

- Automatic speech recognition (ASR)

 \[x(n) \xrightarrow{\text{Automatic Speech Recognition (ASR)}} \text{text} \]

- Convert speech signal into “text”
 - Label describing speech

- This is a pattern recognition task
ASR APPLICATIONS AND ISSUES

- Applications
 - Dictation machines
 - Interfaces to devices
 - Reservation systems, phone service, stock quotes, directory assistance
 - Transcribing databases and searching
 - Aids for handicapped
 - Language to language

- Sources of variability in speech
 - Speaker
 - Accent, social context, mood/style, vocal tract size, male/female/child
 - Acoustic environment
 - Background noise reverberation
 - Microphone
 - Non-linear and spectral characteristics
 - Channel
 - Echoes, distortion
Feature extraction
- Represent speech content
- Typically will use mel-frequency cepstrum (MFCC) coefficients

Recognizer
- Pattern recognition system that maps features into text
- Hidden Markov model (HMM) is popular choice [dynamic time warping (DTW)]
 - See HTK Speech Recognition Toolkit [link]
“Spec”-trum in reverse: “ceps”-strum

Cepstrum can be seen as information about rate of change in the different spectrum bands

Calculation:
- Take FFT: \(x(n) \rightarrow X(e^{j\omega}) \)
- Take log magnitude: \(\log|X(e^{j\omega})| \)
- Take iFFT: \(c[n] = \mathcal{F}^{-1}\{\log|X(e^{j\omega})|\} \)

MFCC: Use non-linear frequency bands that mimic human perception
- Lower frequency have higher resolution

Using excitation and vocal track model
- \(|X(e^{j\omega})| = |H(e^{j\omega})||U(e^{j\omega})| \)
- \(\log|X(e^{j\omega})| = \log|H(e^{j\omega})| + \log|U(e^{j\omega})| \)
- \(c_x(n) = c_h(n) + c_u(n) \)
 - Can separate excitation from vocal tract with “liftering” (excitation not required for recognition)
The recognition system is a classifier
- Compares input speech with a template of known speech to generate output text label

\[x(n) \rightarrow \text{classifier} \rightarrow \text{text} \]

Templates (reference) patterns
- \(\{R^1, R^2, \ldots, R^V\} \)
 - \(V \) – size of vocabulary
- \(R^j = \{r_1^j, r_2^j, \ldots, r_{n_j}^j\} \)
 - \(n_j \) depends on particular template

Two main tasks:
- Template design
- Comparing template with a given observation

Issues
- Unequal length data
- Alignment of speech
- Distortion (distance) measure for comparison
LOG SPECTRAL DISTORTION

- Given two speech signals $s[n]$ and $s'[n]$
- Log spectral distortion
 - $V(\omega) = \log S(\omega) - \log S'(\omega)$
 - $V(\omega) = \sum (c[n] - c'[n]) e^{-j\omega n}$
 - $d^2 (S, S') = \frac{1}{2\pi} \int_{-\pi}^{\pi} |V(\omega)|^2 d\omega$
 - $d^2 (S, S') = \sum |c[n] - c'[n]|^2$
- Cepstral coefficients as features lead to simple computational procedure
 - $c[0]$ usually not considered in comparison (measure of intensity)
 - Often cepstra derivatives used in representation
DYNAMIC TIME WARPING

- Generic method to compare sequences of unequal length
 - Align sequences so that distance is minimized

- Misaligned sequences may be very similar but have large distortion
 - Need alignment to handle different speeds of utterance

- Warping function to align two sequences can be solved efficiently with dynamic program
 - Search for a minimum cost path matching elements of sequences
 - Note: all elements must be matched

Each element (cepstrum for a frame) is compared between two sequences to build cost matrix
 - Cost it the distortion between sequence elements
HIDDEN MARKOV MODELS (HMM)

- DTW is restricted to small tasks
 - Cannot include statistical information or use to design templates

- HMM is used for statistical model of speech
 - States of HMM correspond to phonemes
 - Don’t know state, but observe measurement of state (sound) probabilistically related to state

- Use HMM package

- Use left-to-right HMM

- Must learn for each “word”:
 - Observation distributions \(b_i \)
 - State transitions \(a_{ij} \)

- Recognition by evaluating likelihood that a HMM word generated observation \(x(n) \)