Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu

EE482: Digital Signal Processing Applications

Spring 2014 TTh 14:30-15:45 CBC C222

Lecture 02 Numerical effects 14/01/28

http://www.ee.unlv.edu/~b1morris/ee482/

Outline

- Random Variables
- Fixed-Point Numbers
- Quantization Errors
- Arithmetic Errors

Random Variables

- Function that maps from a sample space to a real value
 - $x: S \to \mathbb{R}$
 - *x* random variable (does not have a value)
 - S sample space
- Cumulative probability function (CDF)
 - $F(X) = P(x \le X)$
 - E.g. probability $\{x \le X\}$
- Probability density function

•
$$f(X) = \frac{dF(X)}{dX}$$

• $\int_{-\infty}^{\infty} f(X)dX = 1$

- $P(X_1 < x \le X_2) = F(X_2) F(X_1) = \int_{x_1}^{x_2} f(X) dX$
- For discrete x, takes values X_i , i = 1, 2, 3, ...

•
$$p_i = P(x = X_i)$$

Uniform Random Variable

• Variable takes on value in a range with equal probability

•
$$f(X) = \begin{cases} \frac{1}{X_2 - X_1} & X_1 \le x \le X_2\\ 0 & else \end{cases}$$

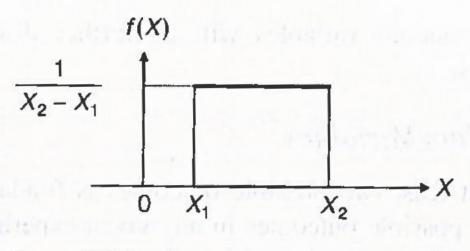


Figure 2.17 The uniform density function

• Be sure you can calculate mean and variance

Statistics of Random Variables

- Expected value (mean)
 - $m_x = E[x]$ expectation operator • $m_x = \int_{-\infty}^{\infty} Xf(X)dX$ continuous • $m_x = \sum_i X_i p_i$ discrete

Can be can computed with mean.m

Variance (spread around mean)

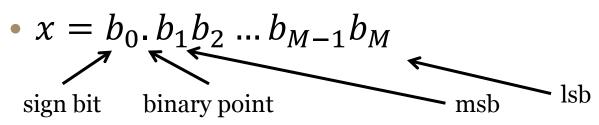
•
$$\sigma_x^2 = E[(x - m_x)^2] = E[x^2] - m_x^2$$

• $\sigma_x^2 = \int_{-\infty}^{\infty} (X - m_x)^2 f(X) dX$ continuous
• $\sigma_x^2 = \sum_i p_i (X_i - m_x)^2$ discrete

• For $m_x = 0$, • $\sigma_x^2 = E[x^2] = P_x$ second moment, power

Fixed-Point Numerical Effects

• Fractional numbers are represented in 2's complement with B = M + 1 bits



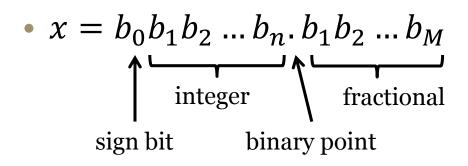
•
$$b_0 = \begin{cases} 0 & x \ge 0 & \text{positive} \\ 1 & x < 0 & \text{negative} \end{cases}$$

• value =
$$-b_0 + \sum_{m=1}^{M} b_m 2^{-m}$$

$$-1 \le x \le (1 - 2^M)$$

• Unbalanced range with more negative than positive numbers

General Fractional Format Qn.m



- Example 2.25
- $x = 0100\ 1000\ 0001\ 1000b = 0x4818$
- Q0.15
 - $x = 2^{-1} + 2^{-4} + 2^{-11} + 2^{-12} = 0.56323$
- Q2.13
 - $x = 2^1 + 2^{-2} + 2^{-9} + 2^{-10} = 2.25293$
- Q5.10
 - $x = 2^4 + 2^1 + 2^{-6} + 2^{-7} = 18.02344$

Finite Word Length Effects

- **1.** Quantization errors
 - Signal quantization
 - Coefficient quantization
- 2. Arithmetic errors
 - Roundoff (truncation)
 - Overflow

Signal Quantization

- ADC conversion of sampled signals to fixed levels
- Using Q15 and *B* bits
 - Dynamic range $-1 \le x < 1$
 - Quantization step
 - $\Delta = \frac{2}{2^B} = 2^{-B+1} = 2^{-M}$
- Quantization error
 - $e(n) = x(n) x_B(n)$
 - $x_B(n) = Q[x(n)]$
 - $|e(n)| \leq \frac{\Delta}{2} = 2^{-B}$ (rounding)
 - Error dependent on word length *B*
 - More bits for better resolution, less error (noise)
- Signal to quantization noise (SQNR)
 - $SQNR = \frac{\sigma_x^2}{\sigma_e^2} = 3.2^{2B}\sigma_x^2$
 - SQNR =4.77 + 6.02B + 10 log₁₀ $\sigma_x^2 dB$

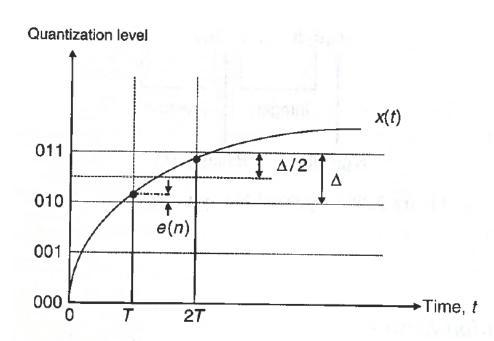


Figure 2.21 Quantization process related to a 3-bit ADC

Coefficient Quantization

- Same error issues as for signals
- Results in movement of the locations of poles/zeros
 - Changes system function polynomials
 - Can lead to instability if poles go outside the unit circle
 - Generally, more a problem with IIR filters
- Can limit coefficient quantization effects by using lower-order filters
 - Use of cascade and parallel filter structures

Roundoff Noise

• A product must be represented in *B* bits by rounding (truncation)

$$y(n) = \alpha x(n)$$

$$1$$

$$2B \text{ bits}$$

$$B \text{ bits}$$

$$B \text{ bits}$$

Error model

$$y(n) = Q[\alpha x(n)] = \alpha x(n) + e(n)$$

e(*n*) is uniformly distributed zero mean noise (rounding)

Overflow

- $y(n) = x_1(n) + x_2(n)$
 - $-1 \le x_i(n) < 1$
 - $-1 \le y(n) < 1$
- Overflow occurs when the sum cannot fit in the word container
- Signals need to be scaled to prevent overflow

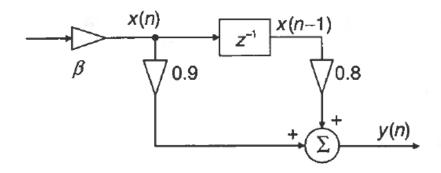


Figure 2.24 Block diagram of simple FIR filter with scaling factor β

• Notice: this reduces the SQNR

•
$$SQNR = 10 \log_{10}(\frac{\beta^2 \sigma_x^2}{\sigma_a^2})$$

• $SQNR = 4.77 + 6.02B + 10 \log_{10} \sigma_x^2 + 10 \log_{10} \beta_{J} dB$

negative