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Why FIR Filters? 

• Always stable (finite) 

• Linear phase property is guaranteed (even/odd 
symmetry) 

• Finite precision errors are less severe (no 
feedback) 

• FIR filtering is efficient for implementation 

 

• Modern filter design is FIR design 
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Filter Characteristics 
• Remember the LTI system 

 

 

 

 

 

 

 

• Transient response 
▫ Rising-time – how fast output 

can change (changing rate) 

▫ Settling-time – how long to 
settle to stable value 

▫ Overshoot – if output goes over 
the desired value 

• Steady-state response 

▫ 𝑌 𝜔 = 𝐻 𝜔 𝑋(𝜔) 
▫ Magnitude response 

 𝑌 𝜔 = 𝐻 𝜔 |𝑋 𝜔 | 

▫ Phase response 

 Φ𝑌 𝜔 = Φ𝐻 𝜔 +Φ𝑋 𝜔   

▫ Group delay 

 𝑇𝑑 𝜔 = −
𝑑Φ𝐻 𝜔

𝑑𝜔
 

 Constant group delay for 
linear phase  no phase 
distortion 

▫ Linear phase filters 
 Φ𝐻 𝜔 = −𝛼𝜔, or 𝜋 − 𝛼𝜔 

 All frequencies delayed by 
same amount 

 Simple phase relationship 
indicates a time shift by α 

 𝑦 𝑛 = 𝑥(𝑛 − 𝛼) 
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Filter Types 
 • Defined in terms of 

magnitude response 

 

• Note: only 0, 𝜋  given 
because with real filter 
coefficients 𝐻 𝜔  is even 
symmetric across 𝜔 = 0 

• Remember this is 2𝜋 
periodic 

 

 

• Bandstop with a narrow 
band is called a notch 
filter 

 

• Allpass filter has 
𝐻 𝜔 = 1,  ∀𝜔 
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Filter Specifications 
• Defined by magnitude 

response 

 

• Must give a tolerance scheme 

▫ Cannot practically make ideal 
filters with sharp transitions 

 

• 𝜔𝑝- passband edge frequency 

• 𝜔𝑠- stopband edge frequency 

• 𝛿𝑝 - passband ripple 

▫ 𝐴𝑝 = 20 log10
1+𝛿𝑝

1−𝛿𝑝
𝑑𝐵 

• 𝛿𝑠 - stopband attenuation 

▫ 𝐴𝑠 = −20 log10 𝛿𝑠  𝑑𝐵 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
• 1 − 𝛿𝑝 ≤ 𝐻 𝜔 ≤ 1 + 𝛿𝑝 0 ≤ 𝜔 ≤ 𝜔𝑝 

•                   𝐻 𝜔 ≤ 𝛿𝑠 𝜔𝑠 ≤ 𝜔 ≤ 𝜋 
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Linear Phase FIR Filters 
• Systems have symmetry which 

can be exploited 

• Even 

▫ 𝑏𝑙 = 𝑏𝐿−1−𝑙,  𝑙 = 0, 1, … , 𝐿 − 1  

• Odd 

▫ 𝑏𝑙 = −𝑏𝐿−1−𝑙, 𝑙 = 0, 1, … , 𝐿 − 1  

 

• Group delay is constant  

▫ 𝑇𝑑 𝜔 = 𝑀 =  
𝐿/2 𝐿 even
𝐿−1

2
𝐿 odd

 

 

 

 

 

 

 

 

 

 

 

 

• Less multiplications are 
required because coefficients 
are shared  
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Design of FIR Filters 
• Fourier series (windowing) method 

▫ Find a desired impulse response from desired frequency response  

▫ 𝐻𝑑 𝜔 =  ℎ𝑑 𝑛 𝑒−𝑗𝜔n∞
𝑛=−∞  

▫ ℎ𝑑 𝑛 =  𝐻 𝜔 𝑒𝑗𝜔𝑛𝜋

−𝜋
𝑑𝜔 

• Notice the impulse response is in general infinite 

▫ Can make this finite only taking some of the samples (truncate) 

▫ ℎ 𝑛 =  
ℎ𝑑(𝑛) −𝑀 ≤ 𝑛 ≤ 𝑀
0 𝑒𝑙𝑠𝑒 

 

▫ This can be made causal by shifting to the right by 𝑀 samples 

▫ 𝑏𝑙 = ℎ 𝑙 − 𝑀 ,  𝑙 = 0,… , 2𝑀 

 

• Notice that ℎ 𝑛  can be thought of as FS coefficients for 𝐻𝑑(𝜔) 

▫ More coefficients, better approximation  
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Examples 
• Example 3.5 

• Design a LP filter using 
windowing 

• 𝐻𝑑 𝜔 =  
1 𝜔 ≤ 𝜔𝑐

0 𝑒𝑙𝑠𝑒
 

• Use FT equation or in a Table 
of common pairs 

• ℎ𝑑 𝑛 = sin
𝜔𝑐𝑛

𝜋𝑛
=

𝜔𝑐

𝜋
𝑠𝑖𝑛𝑐

𝜔𝑐𝑛

𝜋
 

• Window the impulse response 
and shift to make causal 

• 𝑏𝑙 =

 
𝜔𝑐

𝜋
𝑠𝑖𝑛𝑐

𝜔𝑐(𝑙−𝑀)

𝜋
0 ≤ 𝑙 ≤ 𝐿 − 1

0 𝑒𝑙𝑠𝑒
 

• Example 3.7 

• Design a LP filter with 
𝜔𝑐 = 0.4𝜋 with 𝐿 = 61. 

▫ 𝑀 =
𝐿−1

2
= 30 

▫ 𝑏𝑙 = 0.4𝑠𝑖𝑛𝑐 0.4(𝑙 − 30)  

 𝑙 = 0, 1, … , 60 
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Windowing Approximation Accuracy 

• Notice the rippling effect known as Gibbs 
phenomenon 

• Windowing is equivalent to multiplication in time 
domain 

▫ ℎ 𝑛 = ℎ𝑑 𝑛 𝑤(𝑛) 
▫ Rectangular window 

 𝑤 𝑛 =  
1 −𝑀 ≤ 𝑛 ≤ 𝑀
0 𝑒𝑙𝑠𝑒

 

• Multiplication in time is convolution in frequency 
domain 

▫ 𝐻 𝜔 =
1

2𝜋
𝐻𝑑 𝜔 ∗𝑊 𝜔  

 𝑊 𝜔 =
sin

2𝑀+1

2
𝜔

sin
𝜔

2
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Windowing in Frequency Domain 
• 𝐻 𝜔 =

1

2𝜋
𝐻𝑑 𝜔 ∗𝑊 𝜔  

▫ Ideal frequency response is 
smoothed by window DTFT 
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Figure 7.27   (a) Convolution process implied by truncation of the ideal 

impulse response. (b) Typical approximation resulting from windowing the 

ideal impulse response. 

Figure 7.28   Magnitude of the Fourier transform 

of a rectangular window (M = 7). 



Rectangular Window 

• 𝑊 𝜔 =
sin

2𝑀+1

2
𝜔

sin
𝜔

2
  

 

• This window spectrum has 
ripples which causes ripples in 
𝐻 𝜔  at sharp transitions 
▫ Can’t make perfectly sharp 

edges 
• Mainlobe – centered at 𝜔 = 0  

▫ Care about width  
• Sidelobes – all other ripples 

▫ Care about height 
• Gibbs phenomenon can be 

managed by smoothing the 
window edges 
▫ Results in lower sidelobe 

height and increased mainlobe 
width 

▫ Larger transition width at 
discontinuity but less ringing 
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Windowing Design Considerations 

• 𝐻 𝜔 =
1

2𝜋
𝐻𝑑 𝜔 ∗𝑊 𝜔  

▫ Ideal frequency response is 
smoothed by window DTFT 

• The quality of the FIR 
approximation is dependent on 
two factors 
▫ The width of the main lobe 
▫ The peak side-lobe amplitude 
 

• Want narrow main-lobe with 
small side lobe amplitude 
▫ More impulse-like 
▫ Cannot optimize both at the 

same time 
 

▫ 𝑁Δ𝑓 = 𝑐 
 𝑁 – length of filter 
 See Shaum’s DSP notes 

 

• Increasing length of window the 
decreases the width of the 
mainlobe 
▫ Decreases width of the 

transition band 
• Peak sidelobe amplitude is 

practically independent of 
length only depends on shape of 
window 
▫ Decrease in sidelobe amplitude 

results in greater mainlobe 
width 
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Window Functions 

• Many windows have been designed to trade off 
mainlobe width and sidelobe height 

▫ All have smooth transitions at edge of window 
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Window Performance 
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http://www.labbookpages.co.uk/audio/firWindowing.html 



FIR Design Steps 
1. Select window type to satisfy 

stopband attenuation 
requirements 

2. Determine window size 𝐿 
based on transition width 

3. Calculate window values 

4. Calculate impulse response 
of desired filter 

▫ Truncate to fixed length 𝐿 

▫ Shift to make causal 

5. Calculate final filter 
coefficients as product of 
window and desired 
response 

▫ 𝑏𝑙 = ℎ𝑑 𝑙 − 𝑀 𝑤[𝑙] 
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Upsampling/Interpolation 
• Increase the sampling rate of a 

signal by factor 𝐿 

• Accomplished by inserting 
zeros into a sequence and then 
lowpass filtering 
▫ Zero insertion is upsampling 

▫ LP filtering is interpolation 

• 𝑥𝑢 𝑛 =

 
𝑥

𝑛

𝐿
𝑛 = 0,±𝐿,±2𝐿,… 

0 𝑒𝑙𝑠𝑒
 

▫ Resulting signal has more 
samples but gaps between 
values 

• LP filter using gain 𝑈 and 
cutoff = 𝜋/𝑈 
▫ Gain of 𝐿 to “spread” sample 

energy to neighbor zeros 
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Figure 4.24   Frequency-domain illustration of interpolation. 



Downsampling/Decimation 
• Reduce the sampling rate of a 

signal by factor 𝐷 

• Accomplished by dropping 
samples 

• 𝑥𝑑 𝑛 = 𝑥 𝑛𝐷  

• Remember bandwidth is 
controlled by sampling rate 

▫ Both sampling rate and 
bandwidth decrease by factor 
𝐷 

▫ This may result in aliasing of 
the signal 

• Avoid aliasing by pre-filtering 
signal with LP filter with cutoff 
= 𝜋/𝑀 before decimation 
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Figure 4.21   (a)–(c) Downsampling with aliasing. (d)–(f) Downsampling 
with prefiltering to avoid aliasing. 



Arbitrary Sample Rate Conversion 
• Conversion to arbitrary sample rate is possible 

▫ 𝑅 = 𝑈/𝐷 
 Must find appropriate upsample factor 𝑈 and 

downsample factor 𝐷 

• First perform interpolation followed by decimation 
▫ Minimize reduction in signal bandwidth 

 No fear of aliasing in upsample 
▫ Downsampling first could result in loss of high 

frequency content 
• Can combine interpolation LP filter with LP for 

decimation 
▫ Cuttoff should be minimum of either operation 

• Use Matlab interp.m, decimate.m, and 
upfindn.m/resample.m 
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