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Outline 

• Analog Filter Characteristics 

• Frequency Transforms 

• Design of IIR Filters 

• Realizations of IIR Filters 

▫ Direct, Cascade, Parallel  

• Implementation Considerations 
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IIR Design 

• Reuse well studied analog filter design 
techniques (books and tables for design) 

• Need to map between analog design and a digital 
design 

▫ Mapping between s-plane and z-plane 

 

3 



Analog Basics 
• Laplace transform 

▫ 𝑋 𝑠 =  𝑥 𝑡 𝑒−𝑠𝑡𝑑𝑡
∞

−∞
 

• Complex s-plane 

▫ 𝑠 = 𝜎 + 𝑗Ω 
 Complex number with 𝜎 and Ω real 

▫ 𝑗Ω – imaginary axis 
• Fourier transform for 𝜎 = 0 

▫ When region of convergence contains the 𝑗Ω axis 
• Convolution relationship 

▫ 𝑦 𝑡 = 𝑥 𝑡 ∗ ℎ 𝑡 → 𝑌 𝑠 = 𝑋 𝑠 𝐻(𝑠) 

▫ 𝐻 𝑠 =
𝑌 𝑠

𝑋 𝑠
=  ℎ 𝑡 𝑒−𝑠𝑡

∞

−∞
𝑑𝑡 

• Stability constraint requires poles to be in the left 
half s-plane 
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Mapping Properties 
• z-transform from Laplace by change of variable 

▫ 𝑧 = 𝑒𝑠𝑇 = 𝑒𝜎𝑇𝑒𝑗Ω𝑇 = 𝑧 𝑒𝑗𝜔 

 𝑧 = 𝑒𝜎𝑇 ,  𝜔 = Ω𝑇  

• This mapping is not unique 
▫ −𝜋/𝑇 < Ω < 𝜋/𝑇 → unit circle 
▫ 2𝜋 multiples as well 

 
 
 
 
 
 
 
 
 

▫ Left half s-plane mapped inside unit circle 
▫ Right half s-plane mapped outside unit circle 
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Filter Characteristics 

• Designed to meet a given/desired magnitude 
response 

• Trade-off between : 

▫ Phase response  

▫ Roll-off rate – how steep is the transition between 
pass and stopband (transition width) 
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Butterworth Filter 
• All-pole approximation to idea filter 

• 𝐻 Ω 2 =
1

1+ Ω/Ω𝑝
2𝐿 

▫ 𝐻 0 = 1 

▫ 𝐻 Ω𝑝 = 1/ 2 
 -3 dB @ Ω𝑝 

• Has flat magnitude response in pass and stopband (no ripple) 
• Slow monotonic transition band 

▫ Generally needs larger 𝐿 
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Chebyshev Filter 
• Steeper roll-off at cutoff 

frequency than Butterworth 
▫ Allows certain number of 

ripples in either passband or 
stopband 

• Type I – equiripple in 
passband, monotonic in 
stopband 
▫ All-pole filter 

• Type II – equiripple in 
stopband, monotinic in 
passband 
▫ Poles and zeros 

• Generally better magnitude 
response than Butterworth but 
at cost of poorer phase 
response 
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Elliptic Filter 

• Sharpest passband to stopband transition 

• Equiripple in both pass and stopbands 

• Phase response is highly unlinear in passband 

▫ Should only be used in situations where phase is not 
important to design 
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Frequency Transforms 
• Design lowpass filter and 

transform from LP to another 
type (HP, BP, BS) 

 

• Define mapping 

• 𝐻 𝑧 = 𝐻𝑙𝑝 𝑍  𝑍−1=𝐺 𝑧−1  

▫ Replace 𝑍−1 in LP filter with 
𝐺 𝑧−1  

 

• 𝜃 – frequency in LP 

• 𝜔 – frequency in new 
transformed filter 
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IIR Filter Design 

• IIR transfer function 

 

 

 

• Need to find coefficients 𝑎𝑙 , 𝑏𝑙 
▫ Impulse invariance – sample impulse response 

 Have to deal with aliasing 

▫ Bilinear transform  

 Match magnitude response 

 “Warp” frequencies to prevent aliasing 

11 

𝐻 𝑧 =
 𝑏𝑙𝑧

−𝑙𝐿−1
𝑙=0

1 +  𝑎𝑙𝑧
−𝑙𝑀

𝑙=0

 



Bilinear Transform Design 

• Convert digital filter into an “equivalent” analog filter 

▫ Use bilinear “warping” 

• Design analog filter using IIR design techniques  

• Map analog filter into digital 

▫ Use bilinear transform 

 

12 



Bilinear Transformation 
• Mapping from s-plane to z-plane 

• 𝑠 =
2

𝑇

𝑧−1

𝑧+1
=

2

𝑇

1−𝑧−1

1+𝑧−1
 

• Frequency mapping 

▫ Ω =
2

𝑇
tan

𝜔

2
 

▫ 𝜔 = 2arctan
Ω𝑇

2
 

• Entire 𝑗𝜔-axis is squished into [−𝜋/𝑇, 𝜋/𝑇] to prevent aliasing 
▫ Unique mapping 
▫ Highly non-linear which requires “pre-warp” in design  
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Bilinear Design Steps 
1. Convert digital filter into an 

“equivalent” analog filter 

▫ Pre-warp using  

 Ω =
2

𝑇
tan

𝜔

2
 

2. Design analog filter using 
IIR design techniques  

▫ Butterworth, Chebyshev, 
Elliptical  

3. Map analog filter into digital 

▫ 𝐻 𝑧 = 𝐻 𝑠  
𝑠=

2

𝑇

1−𝑧−1

1+𝑧−1
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Bilinear Design Example 
• Example 4.2 
• Design filter using bilinear transform  

▫ 𝐻 𝑠 = 1/(𝑠 + 1)  
▫ Bandwith 10000 Hz 
▫ 𝑓𝑠 = 8000 Hz 

• Parameters 
▫ 𝜔𝑐 = 2𝜋 1000/8000 = 0.25𝜋 

1. Pre-warp 

▫ Ω𝑐 =
2

𝑇
tan 0.125𝜋 =

0.8284

𝑇
 

2. Scale frequency (normalize scale) 

▫ 𝐻 𝑠 = 𝐻
𝑠

Ω𝑐
=

0.8284

𝑠𝑇+0.8284
 

3. Bilinear transform 

▫ 𝐻 𝑧 =
0.2929 1+𝑧−1

1−0.4141𝑧−1
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IIR Filter Realizations 

• Different forms or structures can implement an 
IIR filter 

▫ All are equivalent mathematically (infinite 
precision) 

▫ Different practical behavior when considering 
numerical effects 

 

• Want structures to minimize error 
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Direct Form I 
• Straight-forward 

implementation of diff. eq. 

▫ 𝑏𝑙 - feed forward coefficients 

 From 𝑥(𝑛) terms 

▫ 𝑎𝑙 - feedback coefficients  

 From 𝑦 𝑛  terms 

 

• Requires 𝐿 +𝑀  coefficients 
and delays 
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Direct Form II 
• Notice that we can decompose 

the transfer function 

▫ 𝐻 𝑧 = 𝐻1 𝑧 𝐻2(𝑧) 

 Section to implement zeros 
section to implement poles 

 

• Can switch order of operations 

▫ 𝐻 𝑧 = 𝐻2 𝑧 𝐻1(𝑝) 

▫ This allows sharing of delays 
and saving in memory 
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Cascade (Factored) Form 
• Factor transfer function and decompose into smaller sub-systems 

▫ 𝐻 𝑧 = 𝐻1 𝑧 𝐻2 𝑧 …𝐻𝐾 𝑧  

 

 

 

• Make each subsystem second order 

▫ Complex conjugate roots have real coefficients 

▫ Limit the order of subsystem (numerical effects) 
 Effects limited to single subsystem stage 

 Change in a single coefficient affects all poles in DF 

 

 

 

 

 

 

• Preferred over DF because of numerical stability 
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Parallel (Partial Fraction) Form 
• Decompose transfer function 

using a partial fraction 
expansion 

▫ 𝐻 𝑧 = 𝐻1 𝑧 + 𝐻2 𝑧 + …+
𝐻𝐾 𝑧  

 𝐻𝑘 𝑧 =
𝑏0𝑘+𝑏1𝑘𝑧

−1

1+𝑎1𝑘𝑧
−1+𝑎2𝑘𝑧

−2 

• Be sure to remember that PFE 
requires numerator order less 
than denominator 

▫ Use polynomial long division 
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