Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu

EE482: Digital Signal Processing Applications

Spring 2014 TTh 14:30-15:45 CBC C222

Lecture 05 IIR Design 14/03/04

http://www.ee.unlv.edu/~b1morris/ee482/

Outline

- Analog Filter Characteristics
- Frequency Transforms
- Design of IIR Filters
- Realizations of IIR Filters
 - Direct, Cascade, Parallel
- Implementation Considerations

IIR Design

- Reuse well studied analog filter design techniques (books and tables for design)
- Need to map between analog design and a digital design
 - Mapping between s-plane and z-plane

Analog Basics

Laplace transform

•
$$X(s) = \int_{-\infty}^{\infty} x(t) e^{-st} dt$$

- Complex s-plane
 - $s = \sigma + j\Omega$
 - Complex number with σ and Ω real
 - *j*Ω imaginary axis
- Fourier transform for $\sigma = 0$
 - When region of convergence contains the $j\Omega$ axis
- Convolution relationship

 Stability constraint requires poles to be in the left half s-plane

Mapping Properties

• z-transform from Laplace by change of variable

$$z = e^{sT} = e^{\sigma T} e^{j\Omega T} = |z|e^{j\alpha}$$

•
$$|z| = e^{\sigma T}$$
, $\omega = \Omega T$

- This mapping is not unique
 - $-\pi/T < \Omega < \pi/T \rightarrow$ unit circle
 - 2π multiples as well

Figure 4.1 Mapping properties between the s-plane and the z-plane

- Left half s-plane mapped inside unit circle
- Right half s-plane mapped outside unit circle

Filter Characteristics

- Designed to meet a given/desired magnitude response
- Trade-off between :
 - Phase response
 - Roll-off rate how steep is the transition between pass and stopband (transition width)

Butterworth Filter

- All-pole approximation to idea filter
- $|H(\Omega)|^2 = \frac{1}{1 + (\Omega/\Omega_p)^{2L}}$
 - |H(0)| = 1
 - $|H(\Omega_p)| = 1/\sqrt{2}$
 - -3 dB @ Ω_p
- Has flat magnitude response in pass and stopband (no ripple)
- Slow monotonic transition band
 - Generally needs larger *L*

Figure 4.2 Magnitude response of Butterworth lowpass filter

Chebyshev Filter

- Steeper roll-off at cutoff frequency than Butterworth
 - Allows certain number of ripples in either passband or stopband
- Type I equiripple in passband, monotonic in stopband
 - All-pole filter
- Type II equiripple in stopband, monotinic in passband
 - Poles and zeros
- Generally better magnitude response than Butterworth but at cost of poorer phase response

Figure 4.3 Magnitude responses of Chebyshev type I (top) and type II lowpass filters

Elliptic Filter

- Sharpest passband to stopband transition
- Equiripple in both pass and stopbands
- Phase response is highly unlinear in passband
 - Should only be used in situations where phase is not important to design

Figure 4.4 Magnitude response of elliptic lowpass filter

Frequency Transforms

- Design lowpass filter and transform from LP to another type (HP, BP, BS)
- Define mapping
- $H(z) = H_{lp}(Z)|_{Z^{-1} = G(z^{-1})}$
 - Replace Z^{-1} in LP filter with $G(z^{-1})$
- θ frequency in LP
- ω frequency in new transformed filter

TABLE 7.1TRANSFORMATIONS FROM A LOWPASS DIGITAL FILTER PROTOTYPEOF CUTOFF FREQUENCY θ_p TO HIGHPASS, BANDPASS, AND BANDSTOP FILTERS

Filter Type	Transformations	Associated Design Formulas
Lowpass	$Z^{-1} = \frac{z^{-1} - \alpha}{1 - az^{-1}}$	$\alpha = \frac{\sin\left(\frac{\theta_p - \omega_p}{2}\right)}{\sin\left(\frac{\theta_p + \omega_p}{2}\right)}$ $\omega_p = \text{desired cutoff frequency}$
Highpass	$Z^{-1} = -\frac{z^{-1} + \alpha}{1 + \alpha z^{-1}}$	$\alpha = -\frac{\cos\left(\frac{\theta_p + \omega_p}{2}\right)}{\cos\left(\frac{\theta_p - \omega_p}{2}\right)}$ $\omega_p = \text{desired cutoff frequency}$
Bandpass	$Z^{-1} = -\frac{z^{-2} - \frac{2\alpha k}{k+1}z^{-1} + \frac{k-1}{k+1}}{\frac{k-1}{k+1}z^{-2} - \frac{2\alpha k}{k+1}z^{-1} + 1}$	$\alpha = \frac{\cos\left(\frac{\omega_{p2} + \omega_{p1}}{2}\right)}{\cos\left(\frac{\omega_{p2} - \omega_{p1}}{2}\right)}$ $k = \cot\left(\frac{\omega_{p2} - \omega_{p1}}{2}\right) \tan\left(\frac{\theta_p}{2}\right)$ $\omega_{p1} = \text{desired lower cutoff frequency}$ $\omega_{p2} = \text{desired upper cutoff frequency}$
Bandstop	$Z^{-1} = \frac{z^{-2} - \frac{2\alpha}{1+k}z^{-1} + \frac{1-k}{1+k}}{\frac{1-k}{1+k}z^{-2} - \frac{2\alpha}{1+k}z^{-1} + 1}$	$\alpha = \frac{\cos\left(\frac{\omega_{p2} + \omega_{p1}}{2}\right)}{\cos\left(\frac{\omega_{p2} - \omega_{p1}}{2}\right)}$ $k = \tan\left(\frac{\omega_{p2} - \omega_{p1}}{2}\right)\tan\left(\frac{\theta_{p}}{2}\right)$ $\omega_{p1} = \text{desired lower cutoff frequency}$ $\omega_{p2} = \text{desired upper cutoff frequency}$

OS 3e

IIR Filter Design

IIR transfer function

$$H(z) = \frac{\sum_{l=0}^{L-1} b_l z^{-l}}{1 + \sum_{l=0}^{M} a_l z^{-l}}$$

- Need to find coefficients *a*_l, *b*_l
 - Impulse invariance sample impulse response
 - Have to deal with aliasing
 - Bilinear transform
 - Match magnitude response
 - "Warp" frequencies to prevent aliasing

Bilinear Transform Design

- Convert digital filter into an "equivalent" analog filter
 Use bilinear "warping"
- Design analog filter using IIR design techniques
- Map analog filter into digital
 - Use bilinear transform

Figure 4.5 Digital IIR filter design using the bilinear transform

Bilinear Transformation

- Mapping from s-plane to z-plane
- $S = \frac{2}{T} \left(\frac{z-1}{z+1} \right) = \frac{2}{T} \left(\frac{1-z^{-1}}{1+z^{-1}} \right)$
- Frequency mapping
 - $\Omega = \frac{2}{T} \tan\left(\frac{\omega}{2}\right)$
 - $\omega = 2 \arctan\left(\frac{\Omega T}{2}\right)$
- Entire $j\omega$ -axis is squished into $[-\pi/T, \pi/T]$ to prevent aliasing
 - Unique mapping
 - Highly non-linear which requires "pre-warp" in design

Figure 4.6 Frequency warping of bilinear transform defined by (4.27)

Bilinear Design Steps

- Convert digital filter into an "equivalent" analog filter
 - Pre-warp using

•
$$\Omega = \frac{2}{T} \tan\left(\frac{\omega}{2}\right)$$

- 2. Design analog filter using IIR design techniques
 - Butterworth, Chebyshev, Elliptical
- 3. Map analog filter into digital

•
$$H(z) = H(s)|_{s = \frac{2}{T}\left(\frac{1-z^{-1}}{1+z^{-1}}\right)}$$

Bilinear Design Example

- Example 4.2
- Design filter using bilinear transform
 - H(s) = 1/(s+1)
 - Bandwith 10000 Hz
 - $f_s = 8000 \text{ Hz}$
- Parameters

•
$$\omega_c = 2\pi (1000/8000) = 0.25\pi$$

1. Pre-warp

•
$$\Omega_c = \frac{2}{T} \tan(0.125\pi) = \frac{0.8284}{T}$$

2. Scale frequency (normalize scale)

$$\widehat{H}(s) = H\left(\frac{s}{\Omega_c}\right) = \frac{0.8284}{sT + 0.8284}$$

3. Bilinear transform

•
$$H(z) = \frac{0.2929(1+z^{-1})}{1-0.4141z^{-1}}$$

IIR Filter Realizations

- Different forms or structures can implement an IIR filter
 - All are equivalent mathematically (infinite precision)
 - Different practical behavior when considering numerical effects
- Want structures to minimize error

Direct Form I

- Straight-forward implementation of diff. eq.
 - b_l feed forward coefficients
 - From x(n) terms
 - a_l feedback coefficients

Direct Form II

- Notice that we can decompose the transfer function
 - $H(z) = H_1(z)H_2(z)$
 - Section to implement zeros section to implement poles

- Can switch order of operations
 - $H(z) = H_2(z)H_1(p)$
 - This allows sharing of delays and saving in memory

Figure 4.7 Direct-form I realization of second-order IIR filter

OS 3e

Cascade (Factored) Form

- Factor transfer function and decompose into smaller sub-systems
 - $H(z) = H_1(z)H_2(z) \dots H_K(z)$

Figure 4.10 Cascade realization of digital filter

- Make each subsystem second order
 - Complex conjugate roots have real coefficients
 - Limit the order of subsystem (numerical effects)
 - Effects limited to single subsystem stage
 - Change in a single coefficient affects all poles in DF

• Preferred over DF because of numerical stability

OS 3e

Parallel (Partial Fraction) Form

- Decompose transfer function using a partial fraction expansion
 - $H(z) = H_1(z) + H_2(z) + ... + H_K(z)$

•
$$H_k(z) = \frac{b_{0k} + b_{1k} z^{-1}}{1 + a_{1k} z^{-1} + a_{2k} z^{-2}}$$

- Be sure to remember that PFE requires numerator order less than denominator
 - Use polynomial long division

