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Fourier Series 
• Periodic signals 

▫ 𝑥 𝑡 = 𝑥(𝑡 + 𝑇0) 
• Periodic signal can be represented as a sum of an 

infinite number of harmonically-related sinusoids 

▫ 𝑥 𝑡 =  𝑐𝑘𝑒
𝑗𝑘Ω0𝑡∞

𝑘=−∞  
▫ 𝑐𝑘 - Fourier series coefficients 

 Contribution of particular frequency sinusoid 
▫ Ω0 = 2𝜋/𝑇0 - fundamental frequency 
▫ 𝑘 – harmonic frequency index 

• Coefficients can be obtained from signal 

▫ 𝑐𝑘 =
1

𝑇0
 𝑥 𝑡 𝑒−𝑗𝑘Ω0𝑡
𝑇0
0

 

▫ Notice 𝑐0 is the average over a period, the DC 
component 
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Fourier Series Example 
• Example 5.1 

• Rectangular pulse train 

• 𝑥 𝑡 =  
𝐴 −𝜏 < 𝑡 < 𝜏
0 𝑒𝑙𝑠𝑒

 

 

 

• 𝑐𝑘 =
𝐴𝜏

𝑇0

sin 𝑘Ω0𝜏/2

𝑘Ω0𝜏/2
 

 

• 𝑇 = 1; 

• Ω0 = 2𝜋 ∗
1

𝑇
= 2π 

 

• Magnitude spectrum is known 
as a line spectrum 

▫ Only few specific frequencies 
represented 
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Fourier Transform 
• Generalization of Fourier 

series to handle non-periodic 
signals 

• Let 𝑇0 → ∞ 

▫ Spacing between lines in FS 
go to zero 

 Ω0 = 2𝜋/𝑇0 

• Results in a continuous 
frequency spectrum 

▫ Continuous function 

• The number of FS coefficients 
to create “periodic” function 
goes to infinity 

 

• Fourier representation of 
signal 

▫ 𝑥 𝑡 =
1

2𝜋
 𝑋 Ω 𝑒𝑗Ω𝑡𝑑Ω
∞

−∞
 

▫ Inverse Fourier transform 

• Fourier transform 

▫ 𝑋 Ω =  𝑥 t 𝑒−𝑗Ω𝑡𝑑𝑡
∞

−∞
 

 

• Notice that a periodic function 
has both a FS and FT 

▫ 𝑐𝑘 =
1

𝑇0
𝑋(𝑘Ω0) 

▫ Notice a normalization 
constant to account for the 
period 
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Discrete Time Fourier Transform 

• Useful theoretical tool for discrete 
sequences/signals 

• DTFT 

▫ 𝑋 𝜔 =  𝑥 𝑛𝑇 𝑒−𝑗𝜔𝑛𝑇∞
𝑛=−∞  

▫ Periodic function with period 2𝜋 

 Only need to consider a 2𝜋 interval 0,2𝜋  or [−𝜋, 𝜋] 

• Inverse FT 

▫ 𝑥 𝑛𝑇 =
1

2𝜋
 𝑋 𝜔 𝑒𝑗𝜔𝑛𝑇𝜋

−𝜋
𝑑𝜔 

▫ Notice this is an integral relationship 

 𝑋 𝜔  is a continuous function  

 Sequence 𝑥(𝑛) is infinite length 
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Sampling Theorem 
• Aliasing – signal distortion 

caused by sampling 

▫ Loss of distinction between 
different signal frequencies 

• A bandlimited signal can be 
recovered from its samples 
when there is no aliasing 

▫ 𝑓𝑠 ≥ 2𝑓𝑚 , Ω𝑠 ≥ 2Ω𝑚 

 𝑓𝑠, Ω𝑠 - signal bandwidth 

 

• Copies of analog spectrum are 
copied at 𝑓𝑠 intervals 

▫ Smaller sampling frequency 
compresses spectrum into 
overlap 
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Discrete Fourier Transform 
• Numerically computable transform used for 

practical applications 
▫ Sampled version of DTFT 

• DFT definition 

▫ 𝑋 𝑘 =  𝑥 𝑛 𝑒−𝑗 2𝜋/N 𝑘𝑛𝑁−1
𝑛=0  

▫ 𝑘 = 0, 1,… ,𝑁 − 1 – frequency index 
▫ Assumes 𝑥 𝑛 = 0 outside bounds [0, 𝑁 − 1] 

• Equivalent to taking 𝑁 samples of DTFT 𝑋(𝜔) over 
the range [0, 2𝜋] 
▫ 𝑁 equally spaced samples at frequencies 𝜔𝑘 = 2𝜋𝑘/𝑁  

 Resolution of DFT is 2𝜋/𝑁 

• Inverse DFT 

▫ 𝑥 𝑛 =
1

𝑁
 𝑋 𝑘 𝑒𝑗 2𝜋/N 𝑘𝑛𝑁−1

𝑘=0  
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Relationships Between Transforms 
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Relationships Between Transforms 
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Relationships Between Transforms 
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DFT Twidle Factors 
• Rewrite DFT equation using 

Euler’s 

• 𝑋 𝑘 =  𝑥 𝑛 𝑒−𝑗 2𝜋/N 𝑘𝑛𝑁−1
𝑛=0  

• 𝑋 𝑘 =  𝑥(𝑛)𝑁−1
𝑛=0 𝑊𝑁

𝑘𝑛 
▫ 𝑘 = 0,1, … , 𝑁 − 1 

▫ 𝑊𝑁
𝑘𝑛 = 𝑒−𝑗 2𝜋/𝑁 𝑘𝑛 =

cos
2𝜋𝑘𝑛

𝑁
− 𝑗 sin

2𝜋𝑘𝑛

𝑁
 

 

• IDFT 

• 𝑥 𝑛 =
1

𝑁
 𝑋 𝑘 𝑒𝑗 2𝜋/N 𝑘𝑛𝑁−1

𝑘=0  

• 𝑥 𝑛 =
1

𝑁
 𝑋(𝑘)𝑁−1

𝑘=0 𝑊𝑁
−𝑘𝑛,   

▫ 𝑘 = 0,1, … , 𝑁 − 1 

 

• Properties of twidle factors 

▫ 𝑊𝑁
𝑘 - N roots of unity in 

clockwise direction on unit 
circle  

▫ Symmetry  

 𝑊𝑁
𝑘+𝑁/2

= −𝑊𝑁
𝑘 , 0 ≤ 𝑘 ≤

𝑁

2
− 1 

▫ Periodicity  

 𝑊𝑁
𝑘+𝑁 = 𝑊𝑁

𝑘 

• Frequency resolution 

▫ Coefficients equally spaced 
on unit circle 

▫ Δ = 𝑓𝑠/𝑁 
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DFT Properties 
• Linearity 

▫ 𝐷𝐹𝑇 𝑎𝑥 𝑛 + 𝑏𝑦 𝑛 = 𝑎𝑋 𝑘 +
𝑏𝑌 𝑘  

• Complex conjugate 

▫ 𝑋 −𝑘 = 𝑋∗(𝑘) 

 1 ≤ 𝑘 ≤ 𝑁 − 1 
 For 𝑥 𝑛  real valued 
 
 
 
 
 
 
 
 
 
 

▫ Only first 𝑀 + 1 coefficients are 
unique 

▫ Notice the magnitude spectrum is 
even and phase spectrum is odd 

 

• Z-transform connection 

▫ 𝑋 𝑘 = 𝑋 𝑧  
𝑧=𝑒𝑗 2𝜋/𝑁 𝑘 

▫ Obtain DFT coefficients by 
evaluating z-transform on the unit 
circle at N equally spaced 
frequencies 𝜔𝑘 = 2𝜋𝑘/𝑁 

• Circular convolution 

▫ 𝑌 𝑘 = 𝐻 𝑘 𝑋(𝑘) 

▫ 𝑦 𝑛 = ℎ 𝑛 ⨂𝑥(𝑛) 

▫ 𝑦 𝑛 =  ℎ 𝑚 𝑥( 𝑛 − 𝑚 𝑚𝑜𝑑 𝑁)𝑁−1
𝑚=0  

 Note: both sequences must be 
padded to same length 
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Fast Fourier Transform 

• DFT is computationally expensive 

▫ Requires many complex multiplications and 
additions 

▫ Complexity ~4𝑁2 

• Can reduce this time considerably by using the 
twidle factors 

▫ Complex periodicity limits the number of distinct 
values 

▫ Some factors have no real or no imaginary parts 

• FFT algorithms operate in 𝑁 log2 𝑁 time 

▫ Utilize radix-2 algorithm so 𝑁 = 2𝑚 is a power of 2 
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FFT Decimation in Time 

• Compute smaller DFTs on subsequences of 𝑥 𝑛  

• 𝑋 𝑘 =  𝑥(𝑛)𝑁−1
𝑛=0 𝑊𝑁

𝑘𝑛 

• 𝑋 𝑘 =

 𝑥1(𝑚)
𝑁/2−1
𝑚=0 𝑊𝑁

𝑘2𝑚 +  𝑥2(𝑚)
𝑁/2−1
𝑚=0 𝑊𝑁

𝑘(2𝑚+1)
 

▫ 𝑥1 𝑚 = 𝑔(𝑛) = 𝑥 2𝑚  - even samples  
▫ 𝑥2 𝑚 = ℎ 𝑛 = 𝑥(2𝑚 + 1) – odd samples  

• Since 𝑊𝑁
2𝑚𝑘 = 𝑊𝑁/2

𝑚𝑘  

▫ 𝑋 𝑘 =  𝑥1(𝑚)
𝑁/2−1
𝑚=0 𝑊𝑁/2

𝑘𝑚 + 𝑊𝑁
𝑘  𝑥2(𝑚)

𝑁/2−1
𝑚=0 𝑊𝑁/2

𝑘𝑚 

 𝑁/2-point DFT of even and out parts of 𝑥(𝑛) 

▫ 𝑋 𝑘 = 𝐺 𝑘 + 𝑊𝑁
𝑘𝐻(𝑘) 

 Full 𝑁 sequence is obtained by periodicity of each 𝑁/2 
DFT 
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FFT Butterfly Structure 
• Full butterfly (8-point) • Simplified structure 
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FFT Decimation 
• Repeated application of 

even/odd signal split  

▫ Stop at simple 2-point DFT 

• Complete 8-point DFT 
structure 
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FFT Decimation in Time Implementation 

• Notice arrangement of samples is not in sequence – requires 
shuffling 
▫ Use bit reversal to figure out pairing of samples in 2-bit DFT 

 
 
 
 
 
 
 
 

• Input values to DFT block are not needed after calculation 
▫ Enables in-place operation 

 Save FFT output in same register as input 
▫ Reduce memory requirements 
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FFT Decimation in Frequency 

• Similar divide and conquer strategy 

▫ Decimate in frequency domain  

• 𝑋 2𝑘 =  𝑥 𝑛 𝑊𝑁
2𝑛𝑘𝑁−1

𝑛=0  

• 𝑋 2𝑘 =  𝑥 𝑛 𝑊𝑁/2
𝑛𝑘𝑁/2−1

𝑛=0 +  𝑥 𝑛 𝑊𝑁/2
𝑛𝑘𝑁−1

𝑛=𝑁/2  

▫ Divide into first half and second half of sequence 

• 𝑋 2𝑘 =

 𝑥 𝑛 𝑊𝑁/2
𝑛𝑘𝑁/2−1

𝑛=0 +  𝑥 𝑛 +
𝑁

2
𝑊

𝑁/2

𝑛+
𝑁

2
𝑘𝑁/2−1

𝑛=0  

• Simplifying with twidle properties 

▫ 𝑋 2𝑘 =  𝑥 𝑛 + 𝑥 𝑛 +
𝑁

2
𝑊𝑁/2

𝑛𝑘𝑁/2−1
𝑛=0  

▫ 𝑋 2𝑘 + 1 =  𝑊𝑁
𝑛 𝑥 𝑛 − 𝑥 𝑛 +

𝑁

2
𝑊𝑁/2

𝑛𝑘𝑁/2−1
𝑛=0  
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FFT Decimation in Frequency Structure 

• Stage structure 

 

 

 

 

 

 

 

 

 

• Bit reversal happens at output 
instead of input 

• Full structure 
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Inverse FFT 

• 𝑥 𝑛 =
1

𝑁
 𝑋(𝑘)𝑁−1

𝑘=0 𝑊𝑁
−𝑘𝑛 

• Notice this is the DFT with a scale factor and 
change in twidle sign 

• Can compute using the FFT with minor 
modifications 

▫ 𝑥∗ 𝑛 =
1

𝑁
 𝑋∗(𝑘)𝑁−1

𝑘=0 𝑊𝑁
𝑘𝑛 

 Conjugate coefficients, compute FFT with scale 
factor, conjugate result 

 For real signals, no final conjugate needed 

▫ Can complex conjugate twidle factors and use in 
butterfly structure 
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FFT Example 
• Example 5.10 

• Sine wave with 𝑓 = 50 Hz 

▫ 𝑥 𝑛 = sin
2𝜋𝑓𝑛

𝑓𝑠
 

 𝑛 = 0,1, … , 128 

 𝑓𝑠 = 256 Hz 

 

• Frequency resolution of DFT? 

▫ Δ = 𝑓𝑠/𝑁 =
256

128
= 2 Hz 

• Location of peak 

▫ 50 = 𝑘Δ → 𝑘 =
50

2
= 25 
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Spectral Leakage and Resolution 
• Notice that a DFT is like windowing 

a signal to finite length 
▫ Longer window lengths (more 

samples) the closer DFT 𝑋(𝑘) 
approximates DTFT 𝑋 𝜔  

• Convolution relationship 

▫ 𝑥𝑁 𝑛 = 𝑤 𝑛 𝑥 𝑛  

▫ 𝑋𝑁 𝑘 = 𝑊 𝑘 ∗ 𝑋 𝑘  

• Corruption of spectrum due to 
window properties 
(mainlobe/sidelobe) 
▫ Sidelobes result in spurious peaks 

in computed spectrum known as 
spectral leakage 

 Obviously, want to use smoother 
windows to minimize these effects 

▫ Spectral smearing is the loss in 
sharpness due to convolution 
which depends on mainlobe width 

• Example 5.15 
▫ Two close sinusoids smeared 

together 

 

 

 

 

 

 

 

 

 

 

 

 

• To avoid smearing: 
▫ Frequency separation should be 

greater than freq resolution 

▫ 𝑁 >
2𝜋

Δ𝜔
,  𝑁 > 𝑓𝑠/Δ𝑓 
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Power Spectral Density 
• Parseval’s theorem 

• 𝐸 =

 𝑥 𝑛 2 =
1

𝑁
 𝑋 𝑘 2𝑁−1

𝑘=0
𝑁−1
𝑛=0  

▫ 𝑋 𝑘 2 - power spectrum or 
periodogram 

• Power spectral density (PSD, or 
power density spectrum or 
power spectrum) is used to 
measure average power over 
frequencies 

• Computed for time-varying 
signal by using a sliding window 
technique 
▫ Short-time Fourier transform 

▫ Grab 𝑁 samples and compute 
FFT 
 Must have overlap and use 

windows 

• Spectrogram 
▫ Each short FFT is arranged as a 

column in a matrix to give the 
time-varying properties of the 
signal 

▫ Viewed as an image 
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Fast FFT Convolution 

• Linear convolution is multiplication in frequency 
domain 

▫ Must take FFT of signal and filter, multiply, and 
iFFT 

▫ Operations in frequency domain can be much 
faster for large filters 

▫ Requires zero-padding because of circular 
convolution 

• Typically, will do block processing 

▫ Segment a signal and process each segment 
individually before recombining  
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