Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu

EE482: Digital Signal Processing Applications

Spring 2014 TTh 14:30-15:45 CBC C222

Lecture 11 Adaptive Filtering 14/03/04

http://www.ee.unlv.edu/~b1morris/ee482/

Outline

- Random Processes
- Adaptive Filters
- LMS Algorithm

Adaptive Filtering

- FIR and IIR filters are designed for linear timeinvariant signals
- How can we handle signals when the characteristics are unknown or changing?
- Need ways to update filter coefficients automatically and continually
 Track time-varying signals and systems

Random Processes

- Real-world signals are time varying and have randomness in nature
 - E.g. speech, music, noise
- Need to characterize a signal even if full deterministic mathematical definition does not exist
- Random process sequence of random variables

Autocorrelation

- Specifies statistical relationship of signal at different time lags (*n* − *k*)
 - $P_{xx}(n,k) = E[x(n),x(k)]$
 - Similarity of observations as a function of the time lag between them
- Mathematical tool for detecting signals
 - Repeating patterns (noise in sinusoid)
 - Measuring time-delay between signals
 - Radar, sonar, lidar
 - Estimation of impulse response
 - Etc.

Wide Sense Stationary (WSS) Process

- Random process statistics do not change with time
- Mean independent of time
 - $E[x(n)] = m_x$
- Autocorrelation only depends only on time lag
 - $r_{xx}(k) = E[x(n+k)x(n)]$
- WSS autocorrelation properties
 - Even function
 - $r_{xx}(-k) = r_{xx}(k)$
 - Bounded by 0 time lag
 - $|r_{xx}(k)| \le r_{xx}(0) = E[x^2(n)]$
 - Zero mean process: $E[x^2(n)] = \sigma_x^2$
- Cross-correlation

$$r_{xy}(k) = E[x(n+k)y(n)]$$

Expected Value

- Value of random variable "expected" if random variable process repeated infinite number of times
 - Weighted average of all possible values
- Expectation operator
 - $E[.] = \int_{-\infty}^{\infty} f(x) dx$
 - f(x) probability density function of random variable X

White Noise

- v(n) with zero mean and variance σ_v^2
- Very popular random signal
 Typical noise model
- Autocorrelation
 - $r_{vv}(k) = \sigma_v^2 \delta(k)$
 - Statistically uncorrelated except at zero time lag
- Power spectrum
 - $P_{vv}(\omega) = \sigma_v^2$, $|\omega| \le \pi$
 - Uniformly distributed over entire frequency range

Example 6.2

- Second-order FIR filter with white noise input
 - y(n) = x(n) + ax(n-1) + bx(n-2)
- Mean

•
$$E[y(n)] = E[x(n) + ax(n-1) + bx(n-2)]$$

• E[y(n)] = E[x(n)] + aE[x(n-1)] + bE[x(n-2)]

•
$$E[y(n)] = 0 + a \cdot 0 + b \cdot 0 = 0$$

Autocorrelation

$$r_{yy}(k) = E[y(n+k)y(n)]$$

$$r_{yy}(k) = E\begin{bmatrix} (x(n+k) + ax(n+k-1) + bx(n+k-2)) \\ (x(n) + ax(n-1) + bx(n-2)) \end{bmatrix}$$

$$r_{yy}(k) = E[x(n+k)x(n)] + E[ax(n+k)x(n-1)] + \dots$$

$$r_{yy}(k) = r_{xx}(k) + ar_{xx}(k-1) + \dots$$

$$r_{yy}(k) = \begin{cases} (1+a^2+b^2)\sigma_x^2 & k = 0 \\ (a+ab)\sigma_x^2 & k = \pm 1 \\ b\sigma_x^2 & k = \pm 2 \\ 0 & else \end{cases}$$

Practical Estimation

- Practical applications have finite length sequences
- Sample mean

$$\overline{m_x} = \frac{1}{N} \sum_{n=0}^{N-1} x(n)$$

Sample autocorrelation

•
$$\overline{r_{xx}}(k) = \frac{1}{N-k} \sum_{n=0}^{N-k-1} x(n+k) x(n)$$

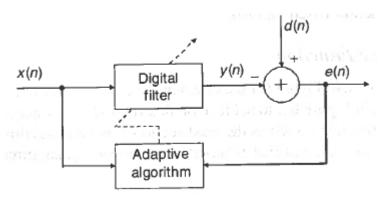
- Only produces a good estimate of lags < 10% of *N*
- Use Matlab (mean.m, xcorr.m, etc.) to calculate

Adaptive Filters

- Signal characteristics in practical applications are time varying and/or unknown
- Must modify filter coefficients adaptively in an automated fashion to meet objectives
- Example: Channel equalization
 - High-speed data communication via media channel (e.g. wireless network)
 - Channel equalization compensates for channel distortion (e.g. path from wifi router and computer)
 - Channel must be continually tracked and characterized to compensate for distortion (e.g. moving around a room)

General Adaptive Filter

- Two components
 - Digital filter defined by coefficients
 - Adaptive algorithm automatically update filter coefficients (weights)



- Adaption occurs by comparing filtered signal y(n) with a desired (reference) signal d(n)
 - Minimize error *e*(*n*) using a cost function (e.g. mean-square error)
 - Continually lower error and get y(n) closer to d(n)

FIR Adaptive Filter

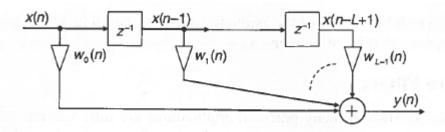


Figure 6.2 Block diagram of time-varying FIR filter for adaptive filtering

- $y(n) = \sum_{l=0}^{L-1} w_l(n) x(n-l)$
 - Notice time-varying weights
- In vector form

•
$$y(n) = \mathbf{w}^{T}(n)\mathbf{x}(n) = \mathbf{x}^{T}(n)\mathbf{w}(n)$$

• $\mathbf{x}(n) = [x(n), x(n-1), ..., x(n-L+1)]^{T}$
• $\mathbf{w}(n) = [w_{0}(n), w_{1}(n), ..., w_{L-1}(n)]^{T}$

Error signal

•
$$e(n) = d(n) - y(n) = d(n) - \boldsymbol{w}^T(n)\boldsymbol{x}(n)$$

Performance Function

• Use mean-square error (MSE) cost function

•
$$\xi(n) = E[e^{2}(n)]$$

• $\xi(n) = E[d^{2}(n)] - 2p^{T}w(n) + w^{T}(n)Rw(n)$
• $p = E[d(n)x(n)] = [r_{dx}(0), r_{dx}(1), ..., r_{dx}(L-1)]^{T}$
• R - autocorrelation matrix
• $R = E[x(n)x^{T}(n)]$

	$\int r_{xx}(0)$	$r_{xx}(1)$		$r_{xx}(L-1)$	enter inves	
=	$\begin{bmatrix} r_{xx}(0) \\ r_{xx}(1) \\ \vdots \end{bmatrix}$	$r_{xx}(0)$		$r_{xx}(L-2)$, (6.22)	(6.22)
	:		٠.			
	$r_{xx}(L-1)$	$r_{xx}(L-2)$		$r_{xx}(0)$		

• Toeplitz matrix – symmetric across main diagonal

Steepest Descent Optimization

- Error function is a quadratic surface
 - $\xi(n) = E[d^2(n)] 2\mathbf{p}^T \mathbf{w}(n) + \mathbf{w}^T(n)\mathbf{R}\mathbf{w}(n)$
- Therefore gradient decent search techniques can be used
 - Gradient points in direction of greatest change
- Iterative optimization to "step" toward the bottom of error surface

•
$$w(n+1) = w(n) - \frac{\mu}{2}\nabla\xi(n)$$

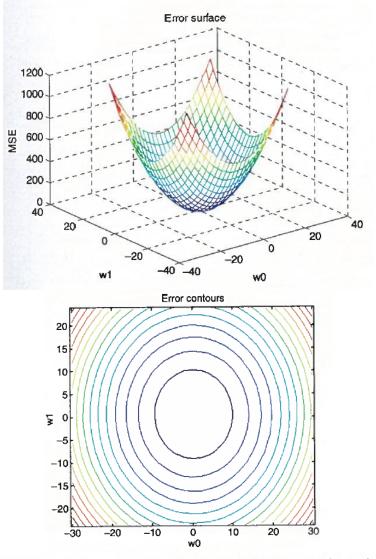


Figure 6.4 Examples of error surface (top) and error contours (bottom), L=2

LMS Algorithm

- Practical applications do not have knowledge of *d*(*n*), *x*(*n*)
 - Cannot directly compute MSE and gradient
 - Stochastic gradient algorithm
- Use instantaneous squared error to estimate MSE

$$\hat{\xi}(n) = e^2(n)$$

- Gradient estimate
 - $\nabla \hat{\xi}(n) = 2[\nabla e(n)]e(n)$
 - $e(n) = d(n) w^T(n)x(n)$
 - $\nabla \hat{\xi}(n) = -2x(n)e(n)$
- Steepest descent algorithm
 - $w(n+1) = w(n) + \mu x(n)e(n)$

- LMS Steps
- 1. Set L, μ , and w(0)
 - L filter length
 - μ step size (small e.g. 0.01)
 - w(0) initial filter weights
- 2. Compute filter output

•
$$y(n) = \boldsymbol{w}^T(n)\boldsymbol{x}(n)$$

3. Compute error signal

•
$$e(n) = d(n) - y(n)$$

- 4. Update weight vector
 - $w_l(n+1) = w_l(n) + \mu x(n-l)e(n),$ $l = 0, 1, \dots L - 1$
- Notice this requires a reference signal