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Adaptive Filtering 

• FIR and IIR filters are designed for linear time-
invariant signals 

 

• How can we handle signals when the 
characteristics are unknown or changing? 

 

• Need ways to update filter coefficients 
automatically and continually 

▫ Track time-varying signals and systems 
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Random Processes 

• Real-world signals are time varying and have 
randomness in nature 

▫ E.g. speech, music, noise 

 

• Need to characterize a signal even if full 
deterministic mathematical definition does not 
exist 

 

• Random process – sequence of random 
variables  
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Autocorrelation 

• Specifies statistical relationship of signal at 
different time lags (𝑛 − 𝑘) 

▫ 𝑟𝑥𝑥 𝑛, 𝑘 = 𝐸 𝑥 𝑛 , 𝑥 𝑘  

▫ Similarity of observations as a function of the time 
lag between them 

• Mathematical tool for detecting signals 

▫ Repeating patterns (noise in sinusoid) 

▫ Measuring time-delay between signals 

 Radar, sonar, lidar  

▫ Estimation of impulse response 

▫ Etc. 
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Wide Sense Stationary (WSS) Process 

• Random process statistics do not change with time 
• Mean independent of time 

▫ 𝐸 𝑥 𝑛 = 𝑚𝑥 

• Autocorrelation only depends only on time lag 

▫ 𝑟𝑥𝑥 𝑘 = 𝐸 𝑥 𝑛 + 𝑘 𝑥 𝑛  

• WSS autocorrelation properties 
▫ Even function 

 𝑟𝑥𝑥 −𝑘 = 𝑟𝑥𝑥 𝑘  

▫ Bounded by 0 time lag 

 𝑟𝑥𝑥 𝑘 ≤ 𝑟𝑥𝑥 0 = 𝐸[𝑥2 𝑛 ] 
 Zero mean process: 𝐸 𝑥2 𝑛 = 𝜎𝑥

2 

• Cross-correlation 

▫ 𝑟𝑥𝑦 𝑘 = 𝐸[𝑥 𝑛 + 𝑘 𝑦 𝑛 ] 
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Expected Value 

• Value of random variable “expected” if random 
variable process repeated infinite number of 
times 

▫ Weighted average of all possible values 

• Expectation operator 

▫ 𝐸 . =  . 𝑓 𝑥 𝑑𝑥
∞

−∞
 

▫ 𝑓(𝑥) – probability density function of random 
variable 𝑋 
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White Noise 

• 𝑣(𝑛) with zero mean and variance 𝜎𝑣
2  

• Very popular random signal 

▫ Typical noise model 

• Autocorrelation 

▫ 𝑟𝑣𝑣 𝑘 = 𝜎𝑣
2𝛿 𝑘  

▫ Statistically uncorrelated except at zero time lag 

• Power spectrum 

▫ 𝑃𝑣𝑣 𝜔 = 𝜎𝑣
2,     𝜔 ≤ 𝜋 

▫ Uniformly distributed over entire frequency range 
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Example 6.2 
• Second-order FIR filter with white noise input 

▫ 𝑦 𝑛 = 𝑥 𝑛 + 𝑎𝑥 𝑛 − 1 + 𝑏𝑥 𝑛 − 2  
• Mean 

▫ 𝐸 𝑦 𝑛 = 𝐸[𝑥 𝑛 + 𝑎𝑥 𝑛 − 1 + 𝑏𝑥 𝑛 − 2 ] 
▫ 𝐸 𝑦 𝑛 = 𝐸[𝑥 𝑛 ] + 𝑎𝐸[𝑥 𝑛 − 1 ] + 𝑏𝐸[𝑥 𝑛 − 2 ] 

▫ 𝐸 𝑦 𝑛 = 0 + 𝑎 ⋅ 0 + 𝑏 ⋅ 0 = 0 
• Autocorrelation 

▫ 𝑟𝑦𝑦 𝑘 = 𝐸 𝑦 𝑛 + 𝑘 𝑦 𝑛  

▫ 𝑟𝑦𝑦 𝑘 = 𝐸
𝑥 𝑛 + 𝑘 + 𝑎𝑥 𝑛 + 𝑘 − 1 + 𝑏𝑥 𝑛 + 𝑘 − 2 ⋅

(𝑥 𝑛 + 𝑎𝑥 𝑛 − 1 + 𝑏𝑥 𝑛 − 2 )
 

▫ 𝑟𝑦𝑦 𝑘 = 𝐸 𝑥 𝑛 + 𝑘 𝑥 𝑛 + 𝐸 𝑎𝑥 𝑛 + 𝑘 𝑥 𝑛 − 1 + …  

▫ 𝑟𝑦𝑦 𝑘 = 𝑟𝑥𝑥 𝑘 + 𝑎𝑟𝑥𝑥 𝑘 − 1 + ⋯ 

▫ 𝑟𝑦𝑦 𝑘 =

1 + 𝑎2 + 𝑏2 𝜎𝑥
2

𝑎 + 𝑎𝑏 𝜎𝑥
2

𝑏𝜎𝑥
2

0

𝑘 = 0
𝑘 = ±1
𝑘 = ±2

𝑒𝑙𝑠𝑒
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Practical Estimation 

• Practical applications have finite length 
sequences 

• Sample mean 

▫ 𝑚𝑥 =
1

𝑁
 𝑥(𝑛)𝑁−1

𝑛=0  

• Sample autocorrelation 

▫ 𝑟𝑥𝑥 𝑘 =
1

𝑁−𝑘
 𝑥 𝑛 + 𝑘 𝑥(𝑛)𝑁−𝑘−1

𝑛−0  

▫ Only produces a good estimate of lags < 10% of 𝑁 

 

• Use Matlab (mean.m, xcorr.m, etc.) to 

calculate 
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Adaptive Filters 

• Signal characteristics in practical applications are 
time varying and/or unknown  

• Must modify filter coefficients adaptively in an 
automated fashion to meet objectives 
 

• Example: Channel equalization 
▫ High-speed data communication via media channel 

(e.g. wireless network) 
▫ Channel equalization compensates for channel 

distortion (e.g. path from wifi router and computer) 
▫ Channel must be continually tracked and 

characterized to compensate for distortion (e.g. 
moving around a room) 
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General Adaptive Filter 
• Two components 

▫ Digital filter – defined by coefficients 
▫ Adaptive algorithm – automatically update filter 

coefficients (weights) 
 

 
 
 
 
 

• Adaption occurs by comparing filtered signal 𝑦(𝑛) 
with a desired (reference) signal 𝑑(𝑛) 
▫ Minimize error 𝑒(𝑛) using a cost function (e.g. mean-

square error) 
▫ Continually lower error and get 𝑦 𝑛  closer to 𝑑(𝑛) 
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FIR Adaptive Filter 

 

 

 

• 𝑦 𝑛 =  𝑤𝑙 𝑛 𝑥(𝑛 − 𝑙)𝐿−1
𝑙=0  

▫ Notice time-varying weights 

• In vector form 

▫ 𝑦 𝑛 = 𝒘𝑇 𝑛 𝒙 𝑛 = 𝒙𝑇 𝑛 𝒘 𝑛  

▫ 𝒙 𝑛 = 𝑥 𝑛 , 𝑥 𝑛 − 1 , … , 𝑥 𝑛 − 𝐿 + 1 𝑇 

▫ 𝒘 𝑛 = 𝑤0 𝑛 , 𝑤1 𝑛 , … , 𝑤𝐿−1 𝑛 𝑇 

• Error signal 

▫ 𝑒 𝑛 = 𝑑 𝑛 − 𝑦 𝑛 = 𝑑 𝑛 − 𝒘𝑇 𝑛 𝒙 𝑛  
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Performance Function 

• Use mean-square error (MSE) cost function 

• 𝜉 𝑛 = 𝐸 𝑒2 𝑛  

• 𝜉 𝑛 = 𝐸 𝑑2 𝑛 − 2𝒑𝑇𝒘 𝑛 + 𝒘𝑇 𝑛 𝑹𝒘 𝑛  

▫ 𝒑 = 𝐸 𝑑 𝑛 𝒙 𝑛 = 𝑟𝑑𝑥 0 , 𝑟𝑑𝑥 1 , … , 𝑟𝑑𝑥 𝐿 − 1 𝑇 

▫ 𝑹 – autocorrelation matrix 

 𝑹 = 𝐸[𝒙 𝑛 𝒙𝑇 𝑛 ] 

 

 

 

 

 Toeplitz matrix – symmetric across main diagonal 
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Steepest Descent Optimization 
• Error function is a quadratic 

surface  

▫ 𝜉 𝑛 = 𝐸 𝑑2 𝑛 − 2𝒑𝑇𝒘 𝑛 +
𝒘𝑇 𝑛 𝑹𝒘 𝑛  

• Therefore gradient decent 
search techniques can be used 

▫ Gradient points in direction 
of greatest change 

 

• Iterative optimization to “step” 
toward the bottom of error 
surface 

▫ 𝑤 𝑛 + 1 = 𝑤 𝑛 −
𝜇

2
∇𝜉 𝑛  
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LMS Algorithm 
• Practical applications do not 

have knowledge of 𝑑 𝑛 , 𝑥 𝑛  

▫ Cannot directly compute 
MSE and gradient 

▫ Stochastic gradient algorithm 

• Use instantaneous squared 
error to estimate MSE 

▫ 𝜉 𝑛 = 𝑒2 𝑛  

• Gradient estimate 

▫ ∇𝜉 𝑛 = 2 ∇𝑒 𝑛 𝑒 𝑛  

 𝑒 𝑛 = 𝑑 𝑛 − 𝑤𝑇 𝑛 𝑥(𝑛) 

▫ 𝛻𝜉 𝑛 = −2𝑥(𝑛)𝑒 𝑛  

• Steepest descent algorithm 

▫ 𝑤 𝑛 + 1 = 𝑤 𝑛 + 𝜇𝑥 𝑛 𝑒 𝑛  

 

• LMS Steps 

1. Set 𝐿, 𝜇, and 𝒘(0) 

▫ 𝐿 – filter length 

▫ 𝜇 – step size (small e.g. 0.01) 

▫ 𝒘(0) – initial filter weights 

2. Compute filter output 

▫ 𝑦 𝑛 = 𝒘𝑇 𝑛 𝒙 𝑛  

3. Compute error signal 

▫ 𝑒 𝑛 = 𝑑 𝑛 − 𝑦 𝑛  

4. Update weight vector 
▫ 𝑤𝑙 𝑛 + 1 = 𝑤𝑙 𝑛 + 𝜇𝑥 𝑛 − 𝑙 𝑒 𝑛 ,

   𝑙 = 0,1, … 𝐿 − 1 

 

• Notice this requires a reference 
signal 
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